On the use of mode shape curvatures for damage localization under varying environmental conditions

On the use of mode shape curvatures for damage localization under varying environmental conditions A novel damage localization method is introduced in this study, which exploits mode shape curvatures as damage features, while accounting for operational variability. The developed framework operates in an output‐only regime,that is, it does not assume availability of records from the influencing environmental/operational quantities but rather from response quantities alone. The introduced tool comprises 3 stages pertaining to training, validation, and diagnostics. During the training stage, a representation of the healthy, or baseline, structural state is acquired over varying operational conditions. A data matrix is formulated, whose individual columns correspond to mode shape curvatures at distinct operational conditions, and principal component analysis (PCA) is applied for extraction of the imprints of separate operational sources on these curvatures. To this end, a residual matrix between the original and the PCA mapped data is formed serving for statistical characterization of each mode. Subsequently, during the validation and diagnostics stages, the mode shape curvature matrices for the currently inspected structural state are assembled and the same PCA mapping is enforced. A typical hypothesis test and a corresponding damage index are then adopted in order to firstly detect damage, and to secondly localize damage, should this exist. The implementation of the proposed method in 2 numerical case studies confirms its effectiveness and the encouraging results suggest further investigation on operating structural systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural Control and Health Monitoring Wiley

On the use of mode shape curvatures for damage localization under varying environmental conditions

Loading next page...
 
/lp/wiley/on-the-use-of-mode-shape-curvatures-for-damage-localization-under-nJFG5LseYt
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1545-2255
eISSN
1545-2263
D.O.I.
10.1002/stc.2132
Publisher site
See Article on Publisher Site

Abstract

A novel damage localization method is introduced in this study, which exploits mode shape curvatures as damage features, while accounting for operational variability. The developed framework operates in an output‐only regime,that is, it does not assume availability of records from the influencing environmental/operational quantities but rather from response quantities alone. The introduced tool comprises 3 stages pertaining to training, validation, and diagnostics. During the training stage, a representation of the healthy, or baseline, structural state is acquired over varying operational conditions. A data matrix is formulated, whose individual columns correspond to mode shape curvatures at distinct operational conditions, and principal component analysis (PCA) is applied for extraction of the imprints of separate operational sources on these curvatures. To this end, a residual matrix between the original and the PCA mapped data is formed serving for statistical characterization of each mode. Subsequently, during the validation and diagnostics stages, the mode shape curvature matrices for the currently inspected structural state are assembled and the same PCA mapping is enforced. A typical hypothesis test and a corresponding damage index are then adopted in order to firstly detect damage, and to secondly localize damage, should this exist. The implementation of the proposed method in 2 numerical case studies confirms its effectiveness and the encouraging results suggest further investigation on operating structural systems.

Journal

Structural Control and Health MonitoringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off