Numerical Prediction of Aerodynamic Noise Generated from an Aircraft in Low Mach Number Flight

Numerical Prediction of Aerodynamic Noise Generated from an Aircraft in Low Mach Number Flight The paper describes numerical prediction of aerodynamic noise generated from an Aircraft. Simulation of turbulent flow is done solving the incompressible Navier‐Stokes equation, where turbulence is modeled applying the orthogonal subgrid scale (OSGS) method with dynamical subscales. Because of comparison, the same simulation is done using the LES (Large Eddy simulation). It is shown how simulation of turbulent flow affects the prediction of acoustic sources calculated using Lighthill's analogy. Translation from the time to frequency domain is done through DFT (Direct Fourier Transform), which gives smaller usage of memory. Acoustic sources are used in the inhomogeneous Helmholtz equation to simulate pressure wave propagation in the domain. It is shown that OSGS with dynamical subscales gives better representation of the spectrum. Overall, better prediction of energy transfer across large and small eddies will give better allocation and presentation of acoustics sources. These sources will change wave propagation of the pressure in the acoustic field. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Numerical Prediction of Aerodynamic Noise Generated from an Aircraft in Low Mach Number Flight

Loading next page...
 
/lp/wiley/numerical-prediction-of-aerodynamic-noise-generated-from-an-aircraft-eILC81l96H
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710311
Publisher site
See Article on Publisher Site

Abstract

The paper describes numerical prediction of aerodynamic noise generated from an Aircraft. Simulation of turbulent flow is done solving the incompressible Navier‐Stokes equation, where turbulence is modeled applying the orthogonal subgrid scale (OSGS) method with dynamical subscales. Because of comparison, the same simulation is done using the LES (Large Eddy simulation). It is shown how simulation of turbulent flow affects the prediction of acoustic sources calculated using Lighthill's analogy. Translation from the time to frequency domain is done through DFT (Direct Fourier Transform), which gives smaller usage of memory. Acoustic sources are used in the inhomogeneous Helmholtz equation to simulate pressure wave propagation in the domain. It is shown that OSGS with dynamical subscales gives better representation of the spectrum. Overall, better prediction of energy transfer across large and small eddies will give better allocation and presentation of acoustics sources. These sources will change wave propagation of the pressure in the acoustic field. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial