Novel synthesis of Fe2O3–Pt ellipsoids coated by double‐shelled La2O3 as a catalyst for the reduction of 4‐nitrophenol

Novel synthesis of Fe2O3–Pt ellipsoids coated by double‐shelled La2O3 as a catalyst for the... A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Novel synthesis of Fe2O3–Pt ellipsoids coated by double‐shelled La2O3 as a catalyst for the reduction of 4‐nitrophenol

Loading next page...
 
/lp/wiley/novel-synthesis-of-fe2o3-pt-ellipsoids-coated-by-double-shelled-la2o3-Ghm9YcvGqO
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4208
Publisher site
See Article on Publisher Site

Abstract

A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off