Novel organometallic chalcones functionalized with a crown ether fragment as optical ion chemosensors

Novel organometallic chalcones functionalized with a crown ether fragment as optical ion... We previously reported the synthesis and characterization of new organometallic chalcones derived from ferrocene, cyrhetrene and cymantrene functionalized with a benzo‐15‐crown‐5 fragment. The ferrocene and cyrhetrene chalcones have been investigated as chemosensors for metal ions with optical response in acetonitrile. Several metal ions were selected considering the diameter of the cavity and the charge‐to‐radius ratio of the cation. The stoichiometry of the complexes was determined using Job's method. It was found that Na+ and Ca2+ complexes have a 1:1 stoichiometry while a 2:1 (metaloligand‐to‐cation) stoichiometry was determined for Ba2+ and Pb2+ complexes. The association constants were calculated according to the stoichiometry of the complex and the results showed that they are directly affected by the electron‐withdrawing nature of the organometallic fragment. Moreover, complexes of ferrocenyl chalcone have larger association constants than those of the cyrhetrenyl analogue. This experimental observation is consistent with the electronic properties of the ferrocenyl fragment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Novel organometallic chalcones functionalized with a crown ether fragment as optical ion chemosensors

Loading next page...
 
/lp/wiley/novel-organometallic-chalcones-functionalized-with-a-crown-ether-nC0OGiOLM0
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4115
Publisher site
See Article on Publisher Site

Abstract

We previously reported the synthesis and characterization of new organometallic chalcones derived from ferrocene, cyrhetrene and cymantrene functionalized with a benzo‐15‐crown‐5 fragment. The ferrocene and cyrhetrene chalcones have been investigated as chemosensors for metal ions with optical response in acetonitrile. Several metal ions were selected considering the diameter of the cavity and the charge‐to‐radius ratio of the cation. The stoichiometry of the complexes was determined using Job's method. It was found that Na+ and Ca2+ complexes have a 1:1 stoichiometry while a 2:1 (metaloligand‐to‐cation) stoichiometry was determined for Ba2+ and Pb2+ complexes. The association constants were calculated according to the stoichiometry of the complex and the results showed that they are directly affected by the electron‐withdrawing nature of the organometallic fragment. Moreover, complexes of ferrocenyl chalcone have larger association constants than those of the cyrhetrenyl analogue. This experimental observation is consistent with the electronic properties of the ferrocenyl fragment.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off