Novel methods improve prediction of species’ distributions from occurrence data

Novel methods improve prediction of species’ distributions from occurrence data Prediction of species’ distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence‐only data to fit models, and independent presence‐absence data to evaluate the predictions. Along with well‐established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species’ distributions. These include machine‐learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species’ occurrence data. Presence‐only data were effective for modelling species’ distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecography Wiley

Loading next page...
 
/lp/wiley/novel-methods-improve-prediction-of-species-distributions-from-dWTcj1y39X
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0906-7590
eISSN
1600-0587
D.O.I.
10.1111/j.2006.0906-7590.04596.x
Publisher site
See Article on Publisher Site

Abstract

Prediction of species’ distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence‐only data to fit models, and independent presence‐absence data to evaluate the predictions. Along with well‐established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species’ distributions. These include machine‐learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species’ occurrence data. Presence‐only data were effective for modelling species’ distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

Journal

EcographyWiley

Published: Apr 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off