Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors

Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors Abstract: Extraneuronal acetylcholine (ACh) has been demonstrated to influence a plethora of cutaneous cell functions in an autocrine, paracrine and endocrine fashion. Through the differentiation‐specific expression of its different nicotinic (nACh‐R) and muscarinic (mACh‐R) receptors, ACh acts upon keratinocyte proliferation and migration, terminal differentiation and barrier formation, sweat and sebum secretion as well as microcirculation and angiogenesis. Only very recently it has been recognized that acetylcholinesterase, but not cholineacetyltransferase, activity is regulated by hydrogen peroxide. Considering that the outer layer of the human skin can be a target for UV‐generated H2O2 in the millimolar range, this mechanism needs to be taken into account for the regulation of ACh homeostasis in skin biology. Consequently, ACh can accumulate, as shown, for example, in the depigmentation process in vitiligo. There is a highly regulated distribution of ACh‐R in human epidermis and adnexal structures, supporting previously observed effects of cholinergic compounds on keratinocyte biology. Most significantly, the regulated expression of ACh‐R in sebaceous glands advocates a role for ACh in sebum production and as a promoter of sebocyte differentiation, thus offering an explanation for skin diseases associated with altered sebum production after chronic nicotine exposure. So far, ACh‐induced sweat production has been thought to be under the exclusive control of mACh‐R. However, recently, the presence of both different nACh‐R and mACh‐R in myoepithelial and acinar cells of eccrine sweat glands has been documented, indicating a more complex regulation of sweat production and expulsion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Dermatology Wiley

Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors

Loading next page...
 
/lp/wiley/novel-aspects-in-cutaneous-biology-of-acetylcholine-synthesis-and-aeDob3nAbN
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0906-6705
eISSN
1600-0625
DOI
10.1111/j.1600-0625.2004.00258.x
pmid
15507109
Publisher site
See Article on Publisher Site

Abstract

Abstract: Extraneuronal acetylcholine (ACh) has been demonstrated to influence a plethora of cutaneous cell functions in an autocrine, paracrine and endocrine fashion. Through the differentiation‐specific expression of its different nicotinic (nACh‐R) and muscarinic (mACh‐R) receptors, ACh acts upon keratinocyte proliferation and migration, terminal differentiation and barrier formation, sweat and sebum secretion as well as microcirculation and angiogenesis. Only very recently it has been recognized that acetylcholinesterase, but not cholineacetyltransferase, activity is regulated by hydrogen peroxide. Considering that the outer layer of the human skin can be a target for UV‐generated H2O2 in the millimolar range, this mechanism needs to be taken into account for the regulation of ACh homeostasis in skin biology. Consequently, ACh can accumulate, as shown, for example, in the depigmentation process in vitiligo. There is a highly regulated distribution of ACh‐R in human epidermis and adnexal structures, supporting previously observed effects of cholinergic compounds on keratinocyte biology. Most significantly, the regulated expression of ACh‐R in sebaceous glands advocates a role for ACh in sebum production and as a promoter of sebocyte differentiation, thus offering an explanation for skin diseases associated with altered sebum production after chronic nicotine exposure. So far, ACh‐induced sweat production has been thought to be under the exclusive control of mACh‐R. However, recently, the presence of both different nACh‐R and mACh‐R in myoepithelial and acinar cells of eccrine sweat glands has been documented, indicating a more complex regulation of sweat production and expulsion.

Journal

Experimental DermatologyWiley

Published: Dec 1, 2004

References