Noradrenergic Modulation of Cholinergic Nucleus Basalis Neurons Demonstrated by in vitro Pharmacological and Immunohistochemical Evidence in the Guinea‐pig Brain

Noradrenergic Modulation of Cholinergic Nucleus Basalis Neurons Demonstrated by in vitro... The effects of noradrenalin were tested upon electrophysiologically characterized cholinergic nucleus basalis neurons in guinea‐pig brain slices. According to their previously established intrinsic membrane properties, the cholinergic cells were distinguished by the presence of low‐threshold Ca2+ spikes and transient outward rectification that endowed them with the capacity to fire in low‐threshold bursts in addition to a slow tonic discharge. A subset of the electrophysiologically identified cholinergic cells that responded to noradrenalin had been filled with biocytin (or biotinamide) and documented in previously published reports as choline acetyltransferase (ChAT)‐immunoreactive. The noradrenalin‐responsive, biocytin‐filled/ChAT+ cells were mapped in the present study and shown to be distributed within the substantia innominata amongst a large population of ChAT+ cells. Slices from another subset of noradrenalin‐responsive, electrophysiologically identified cholinergic cells were stained for dopamine‐β‐hydroxylase to visualize the innervation of the biocytin‐filled neurons by noradrenergic fibres. These biocytin‐filled neurons were surrounded by a moderate plexus of varicose noradrenergic fibres and were ostensibly contacted by a small to moderate number of noradrenergic boutons abutting their soma and dendrites. Applied in the bath, noradrenalin produced membrane depolarization and a prolonged tonic spike discharge. This excitatory action was associated with an increase in membrane input resistance, suggesting that it occurred through reduction of a K+ conductance. These effects persisted when synaptic transmission was eliminated (by tetrodotoxin or low Ca2+/high Mg2+) and were therefore clearly postsynaptic. The excitatory effect of noradrenalin was blocked by the α1‐adrenergic receptor antagonist prazosin and not by the α2‐antagonist yohimbine, and it was mimicked by the α1‐agonist L‐phenylephrine but not by the α2‐agonists clonidine and UK14.304, indicating mediation by an α1‐adrenergic receptor. There was also evidence for a contribution by a β‐adrenergic receptor to the effect, since the β‐antagonist propranolol partially attenuated the effect of noradrenalin, and the β‐agonist isoproterenol produced, like noradrenalin, alone or when applied in the presence of the α1‐antagonist prazosin, membrane depolarization and an increase in tonic spike discharge. These results indicate that through a predominant action upon α1‐adrenergic receptors, but with the additional participation of β‐adrenergic receptors, noradrenalin depolarizes and excites cholinergic neurons. This action would tend to drive the cholinergic cells into a tonic mode of firing and to stimulate or increase the rate of repetitive spike discharge for prolonged periods. The noradrenergic locus coeruleus neurons could thereby recruit the cholinergic basalis neurons to act in tandem with them in facilitating cortical activation during wakefulness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Noradrenergic Modulation of Cholinergic Nucleus Basalis Neurons Demonstrated by in vitro Pharmacological and Immunohistochemical Evidence in the Guinea‐pig Brain

Loading next page...
 
/lp/wiley/noradrenergic-modulation-of-cholinergic-nucleus-basalis-neurons-HNA0HTYTAg
Publisher
Wiley
Copyright
Copyright © 1995 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
DOI
10.1111/j.1460-9568.1995.tb01145.x
Publisher site
See Article on Publisher Site

Abstract

The effects of noradrenalin were tested upon electrophysiologically characterized cholinergic nucleus basalis neurons in guinea‐pig brain slices. According to their previously established intrinsic membrane properties, the cholinergic cells were distinguished by the presence of low‐threshold Ca2+ spikes and transient outward rectification that endowed them with the capacity to fire in low‐threshold bursts in addition to a slow tonic discharge. A subset of the electrophysiologically identified cholinergic cells that responded to noradrenalin had been filled with biocytin (or biotinamide) and documented in previously published reports as choline acetyltransferase (ChAT)‐immunoreactive. The noradrenalin‐responsive, biocytin‐filled/ChAT+ cells were mapped in the present study and shown to be distributed within the substantia innominata amongst a large population of ChAT+ cells. Slices from another subset of noradrenalin‐responsive, electrophysiologically identified cholinergic cells were stained for dopamine‐β‐hydroxylase to visualize the innervation of the biocytin‐filled neurons by noradrenergic fibres. These biocytin‐filled neurons were surrounded by a moderate plexus of varicose noradrenergic fibres and were ostensibly contacted by a small to moderate number of noradrenergic boutons abutting their soma and dendrites. Applied in the bath, noradrenalin produced membrane depolarization and a prolonged tonic spike discharge. This excitatory action was associated with an increase in membrane input resistance, suggesting that it occurred through reduction of a K+ conductance. These effects persisted when synaptic transmission was eliminated (by tetrodotoxin or low Ca2+/high Mg2+) and were therefore clearly postsynaptic. The excitatory effect of noradrenalin was blocked by the α1‐adrenergic receptor antagonist prazosin and not by the α2‐antagonist yohimbine, and it was mimicked by the α1‐agonist L‐phenylephrine but not by the α2‐agonists clonidine and UK14.304, indicating mediation by an α1‐adrenergic receptor. There was also evidence for a contribution by a β‐adrenergic receptor to the effect, since the β‐antagonist propranolol partially attenuated the effect of noradrenalin, and the β‐agonist isoproterenol produced, like noradrenalin, alone or when applied in the presence of the α1‐antagonist prazosin, membrane depolarization and an increase in tonic spike discharge. These results indicate that through a predominant action upon α1‐adrenergic receptors, but with the additional participation of β‐adrenergic receptors, noradrenalin depolarizes and excites cholinergic neurons. This action would tend to drive the cholinergic cells into a tonic mode of firing and to stimulate or increase the rate of repetitive spike discharge for prolonged periods. The noradrenergic locus coeruleus neurons could thereby recruit the cholinergic basalis neurons to act in tandem with them in facilitating cortical activation during wakefulness.

Journal

European Journal of NeuroscienceWiley

Published: Jul 1, 1995

References

  • Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges
    Deschênes, Deschênes; Paradis, Paradis; Roy, Roy; Steriade, Steriade
  • Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices
    Llinás, Llinás; Sugimori, Sugimori
  • Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones in vitro
    Madison, Madison; Nicoll, Nicoll
  • Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons in vitro
    McCormick, McCormick; Prince, Prince
  • Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain
    Wilson, Wilson; Rolls, Rolls

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off