Nonlinear Evolution of Counter‐Propagating Whistler Mode Waves Excited by Anisotropic Electrons Within the Equatorial Source Region: 1‐D PIC Simulations

Nonlinear Evolution of Counter‐Propagating Whistler Mode Waves Excited by Anisotropic Electrons... Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1‐D particle‐in‐cell simulation model, we have investigated the nonlinear evolution of parallel counter‐propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter‐propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high‐k modes in this plasma system. Compared with excited whistler mode waves, these high‐k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Space Physics Wiley

Nonlinear Evolution of Counter‐Propagating Whistler Mode Waves Excited by Anisotropic Electrons Within the Equatorial Source Region: 1‐D PIC Simulations

Loading next page...
 
/lp/wiley/nonlinear-evolution-of-counter-propagating-whistler-mode-waves-excited-RhV2yaO5Ro
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-9380
eISSN
2169-9402
D.O.I.
10.1002/2017JA024850
Publisher site
See Article on Publisher Site

Abstract

Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1‐D particle‐in‐cell simulation model, we have investigated the nonlinear evolution of parallel counter‐propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter‐propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high‐k modes in this plasma system. Compared with excited whistler mode waves, these high‐k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.

Journal

Journal of Geophysical Research: Space PhysicsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial