Nitrogen doped nano porous graphene as a sorbent for separation and preconcentration trace amounts of Pb, Cd and Cr by Ultrasonic assisted in‐syringe dispersive micro solid phase extraction

Nitrogen doped nano porous graphene as a sorbent for separation and preconcentration trace... Nitrogen doped nano porous graphene was used as an efficient sorbent in solid‐phase extraction process for simultaneous separation and pre‐concentration of metal ions lead (II), cadmium(II), and chromium(III)) in biological samples. Ultrasonic assisted in‐syringe dispersive micro solid phase extraction coupled with micro sampling atomic absorption spectrometry was utilized for the determination of metal ions. Nitrogen doped nano porous graphene was synthesized as a nano sorbent by chemical vapour deposition method. Methane and aniline were used as carbon and nitrogen sources. The characterization of sorbent was performed by field emission scanning electron microscope, transmission electron microscopy, atomic force microscope, fourier transform infrared, chemical element analysis and raman analysis. Effective parameters on the extraction efficiency such as pH, sorbent dosage, eluent volume and eluent concentration were optimized by central composite design and desirability function. Experimental results indicate that the optimal conditions for this extraction were pH = 6.4, 1.42 mg of sorbent, 100 μL of eluent, and 0.84 mol L‐1 of eluent concentration. The detection limits are as low as 1.5, 0.3 and 0.9 μg L‐1 for lead, cadmium, and chromium, respectively. The intra‐day precisions were 3.6, 4.38 and 2.94 and Inter‐day precision were 4.83, 5.26 and 4.52 for lead, cadmium, and chromium, respectively. Method performance was investigated by determination of mentioned heavy metals in complicated biological matrixes such as human plasma, urine and saliva samples with good recoveries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Nitrogen doped nano porous graphene as a sorbent for separation and preconcentration trace amounts of Pb, Cd and Cr by Ultrasonic assisted in‐syringe dispersive micro solid phase extraction

Loading next page...
 
/lp/wiley/nitrogen-doped-nano-porous-graphene-as-a-sorbent-for-separation-and-ULdpUDlY3C
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4162
Publisher site
See Article on Publisher Site

Abstract

Nitrogen doped nano porous graphene was used as an efficient sorbent in solid‐phase extraction process for simultaneous separation and pre‐concentration of metal ions lead (II), cadmium(II), and chromium(III)) in biological samples. Ultrasonic assisted in‐syringe dispersive micro solid phase extraction coupled with micro sampling atomic absorption spectrometry was utilized for the determination of metal ions. Nitrogen doped nano porous graphene was synthesized as a nano sorbent by chemical vapour deposition method. Methane and aniline were used as carbon and nitrogen sources. The characterization of sorbent was performed by field emission scanning electron microscope, transmission electron microscopy, atomic force microscope, fourier transform infrared, chemical element analysis and raman analysis. Effective parameters on the extraction efficiency such as pH, sorbent dosage, eluent volume and eluent concentration were optimized by central composite design and desirability function. Experimental results indicate that the optimal conditions for this extraction were pH = 6.4, 1.42 mg of sorbent, 100 μL of eluent, and 0.84 mol L‐1 of eluent concentration. The detection limits are as low as 1.5, 0.3 and 0.9 μg L‐1 for lead, cadmium, and chromium, respectively. The intra‐day precisions were 3.6, 4.38 and 2.94 and Inter‐day precision were 4.83, 5.26 and 4.52 for lead, cadmium, and chromium, respectively. Method performance was investigated by determination of mentioned heavy metals in complicated biological matrixes such as human plasma, urine and saliva samples with good recoveries.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off