New Insights into the Operating Voltage of Aqueous Supercapacitors

New Insights into the Operating Voltage of Aqueous Supercapacitors The main limitation of aqueous supercapacitors (SCs) lies in their narrow operating voltages, especially when compared with organic SCs. Fundamental understanding of factors relevant to the operating voltage helps providing guidance for the assembly of high‐voltage aqueous SCs. In this regard, this concept analyzes the deciding factors for the operating voltage of aqueous SCs. Strategies applied to expand the operating voltage are summarized and discussed from the aspects of electrolyte, electrode, and asymmetric structure. Dynamic factors associated with water electrolysis and maximally using the available potential ranges of electrodes are particularly emphasized. Finally, other promising approaches that have not been explored and their challenges are also elaborated, hoping to provide more insights for the design of high‐voltage aqueous SCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemistry - A European Journal Wiley

New Insights into the Operating Voltage of Aqueous Supercapacitors

Loading next page...
 
/lp/wiley/new-insights-into-the-operating-voltage-of-aqueous-supercapacitors-wDPprvOT6m
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0947-6539
eISSN
1521-3765
D.O.I.
10.1002/chem.201704420
Publisher site
See Article on Publisher Site

Abstract

The main limitation of aqueous supercapacitors (SCs) lies in their narrow operating voltages, especially when compared with organic SCs. Fundamental understanding of factors relevant to the operating voltage helps providing guidance for the assembly of high‐voltage aqueous SCs. In this regard, this concept analyzes the deciding factors for the operating voltage of aqueous SCs. Strategies applied to expand the operating voltage are summarized and discussed from the aspects of electrolyte, electrode, and asymmetric structure. Dynamic factors associated with water electrolysis and maximally using the available potential ranges of electrodes are particularly emphasized. Finally, other promising approaches that have not been explored and their challenges are also elaborated, hoping to provide more insights for the design of high‐voltage aqueous SCs.

Journal

Chemistry - A European JournalWiley

Published: Jan 12, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off