Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula

Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay... Aim The aim of this review is to contribute to our understanding of the origination of the Sundaic and Indochinese biotas in Southeast Asia. Numerous unsolved problems surround the origination of the differences between these biotas and the determinants of the breadth and current position of the transition between them. Location Literature reviews show that phytogeographical and zoogeographical transitions between the Sundaic and Indochinese subregions lie on the Thai–Malay peninsula just north of the Isthmus of Kra. A second, more widely recognized botanical transition lies 500 km further south at the Kangar–Pattani line near the Thai–Malay border. Results The phytogeographical transition involves 575 genera of plants, and a change from wet seasonal evergreen dipterocarp rain forest to moist mixed deciduous forest. The zoogeographical transition is best characterized for forest birds, and more than half the species present in this region have species boundaries north of the Isthmus of Kra, at 11–13° N latitude. Although the phytogeographical transition is climate‐related today, and the avifaunal transition is viewed as being associated with the vegetation change, there is no obvious present day geological, physiographical or environmental feature to account for the origination of the provincial biotas. Similarly, known Neogene palaeoenvironmental changes on the tectonically stable peninsula, including those associated with periods of lower sea levels and the emergence of Sundaland, fail to account for either the origination of the provincial differences or the current position of the transition. Main conclusions Contrary to earlier palaeogeographical reconstructions, it is suggested that Neogene marine transgressions flooded the peninsula in two areas and created circumstances leading to the biogeographical patterns of the present day. The Vail global eustatic curve, supported by the oxygen isotope record, indicates that sea levels were c. 100 m above the present‐day level during the early/middle Miocene (24–13 Ma) and again during the early Pliocene (5.5–4.5 Ma). Present topography suggests such high sea stands would have created 30–100‐km wide seaways north and south of the Nakhon si Thammarat Range in the central peninsula (southern Thailand). Geological, palaeontological and phylogenetic evidence for such hypothetical seaways is scant (there have been no focussed searches) but does not preclude their occurrence. The role of such Neogene highstands in explaining present day biogeographical patterns in Southeast Asia and elsewhere requires assessment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula

Journal of Biogeography, Volume 30 (4) – Apr 1, 2003

Loading next page...
 
/lp/wiley/neogene-marine-transgressions-palaeogeography-and-biogeographic-eHGKXl0F1d
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1046/j.1365-2699.2003.00846.x
Publisher site
See Article on Publisher Site

Abstract

Aim The aim of this review is to contribute to our understanding of the origination of the Sundaic and Indochinese biotas in Southeast Asia. Numerous unsolved problems surround the origination of the differences between these biotas and the determinants of the breadth and current position of the transition between them. Location Literature reviews show that phytogeographical and zoogeographical transitions between the Sundaic and Indochinese subregions lie on the Thai–Malay peninsula just north of the Isthmus of Kra. A second, more widely recognized botanical transition lies 500 km further south at the Kangar–Pattani line near the Thai–Malay border. Results The phytogeographical transition involves 575 genera of plants, and a change from wet seasonal evergreen dipterocarp rain forest to moist mixed deciduous forest. The zoogeographical transition is best characterized for forest birds, and more than half the species present in this region have species boundaries north of the Isthmus of Kra, at 11–13° N latitude. Although the phytogeographical transition is climate‐related today, and the avifaunal transition is viewed as being associated with the vegetation change, there is no obvious present day geological, physiographical or environmental feature to account for the origination of the provincial biotas. Similarly, known Neogene palaeoenvironmental changes on the tectonically stable peninsula, including those associated with periods of lower sea levels and the emergence of Sundaland, fail to account for either the origination of the provincial differences or the current position of the transition. Main conclusions Contrary to earlier palaeogeographical reconstructions, it is suggested that Neogene marine transgressions flooded the peninsula in two areas and created circumstances leading to the biogeographical patterns of the present day. The Vail global eustatic curve, supported by the oxygen isotope record, indicates that sea levels were c. 100 m above the present‐day level during the early/middle Miocene (24–13 Ma) and again during the early Pliocene (5.5–4.5 Ma). Present topography suggests such high sea stands would have created 30–100‐km wide seaways north and south of the Nakhon si Thammarat Range in the central peninsula (southern Thailand). Geological, palaeontological and phylogenetic evidence for such hypothetical seaways is scant (there have been no focussed searches) but does not preclude their occurrence. The role of such Neogene highstands in explaining present day biogeographical patterns in Southeast Asia and elsewhere requires assessment.

Journal

Journal of BiogeographyWiley

Published: Apr 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off