Necessary/sufficient conditions for Pareto optimum in cooperative difference game

Necessary/sufficient conditions for Pareto optimum in cooperative difference game This paper is concerned with the necessary/sufficient conditions for the Pareto optimum of the cooperative difference game in finite horizon. Utilizing the necessary and sufficient characterization of the Pareto optimum, the problem is transformed into a set of constrained optimal control problems with a special structure. Employing the discrete version of Pontryagin's maximum principle, the necessary conditions for the existence of the Pareto solutions are derived. Under certain convex assumptions, it is shown that the necessary conditions are sufficient too. Next, the obtained results are extended to the linear‐quadratic case. For a fixed initial state, the necessary conditions resulting from the maximum principle and the convexity condition on the cost functional provide the necessary and sufficient description of the well‐posedness of the weighted sum optimal control problem. For an arbitrary initial state, the solvability of the related difference Riccati equation provides a sufficient condition under which the Pareto‐efficient strategies are equivalent to the weighted sum optimal controls. In addition, all Pareto solutions are derived based on the solutions of a set of difference equations. Two examples show the effectiveness of the proposed results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optimal Control Applications and Methods Wiley

Necessary/sufficient conditions for Pareto optimum in cooperative difference game

Loading next page...
 
/lp/wiley/necessary-sufficient-conditions-for-pareto-optimum-in-cooperative-gE6D4Lno0Z
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0143-2087
eISSN
1099-1514
D.O.I.
10.1002/oca.2395
Publisher site
See Article on Publisher Site

Abstract

This paper is concerned with the necessary/sufficient conditions for the Pareto optimum of the cooperative difference game in finite horizon. Utilizing the necessary and sufficient characterization of the Pareto optimum, the problem is transformed into a set of constrained optimal control problems with a special structure. Employing the discrete version of Pontryagin's maximum principle, the necessary conditions for the existence of the Pareto solutions are derived. Under certain convex assumptions, it is shown that the necessary conditions are sufficient too. Next, the obtained results are extended to the linear‐quadratic case. For a fixed initial state, the necessary conditions resulting from the maximum principle and the convexity condition on the cost functional provide the necessary and sufficient description of the well‐posedness of the weighted sum optimal control problem. For an arbitrary initial state, the solvability of the related difference Riccati equation provides a sufficient condition under which the Pareto‐efficient strategies are equivalent to the weighted sum optimal controls. In addition, all Pareto solutions are derived based on the solutions of a set of difference equations. Two examples show the effectiveness of the proposed results.

Journal

Optimal Control Applications and MethodsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial