NAT model–based compression of Bayesian network CPTs over multivalued variables

NAT model–based compression of Bayesian network CPTs over multivalued variables Nonimpeding noisy‐AND tree (NAT) models offer a highly expressive approximate representation for significantly reducing the space of Bayesian networks (BNs). They also improve efficiency of BN inference significantly. To enable these advantages for general BNs, several technical advancements are made in this work to compress target BN conditional probability tables (CPTs) over multivalued variables into NAT models. We extend the semantics of NAT models beyond graded variables that causal independence models commonly adhered to and allow NAT modeling in nominal causal variables. We overcome the limitation of well‐defined pairwise causal interaction (PCI) bits and present a flexible PCI pattern extraction from target CPTs. We extend parameter estimation for binary NAT models to constrained gradient descent for compressing target CPTs over multivalued variables. We reveal challenges associated with persistent leaky causes and develop a novel framework for PCI pattern extraction when persistent leaky causes exist. The effectiveness of the CPT compression is validated experimentally. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley

NAT model–based compression of Bayesian network CPTs over multivalued variables

Loading next page...
 
/lp/wiley/nat-model-based-compression-of-bayesian-network-cpts-over-multivalued-XC403kj50m
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12126
Publisher site
See Article on Publisher Site

Abstract

Nonimpeding noisy‐AND tree (NAT) models offer a highly expressive approximate representation for significantly reducing the space of Bayesian networks (BNs). They also improve efficiency of BN inference significantly. To enable these advantages for general BNs, several technical advancements are made in this work to compress target BN conditional probability tables (CPTs) over multivalued variables into NAT models. We extend the semantics of NAT models beyond graded variables that causal independence models commonly adhered to and allow NAT modeling in nominal causal variables. We overcome the limitation of well‐defined pairwise causal interaction (PCI) bits and present a flexible PCI pattern extraction from target CPTs. We extend parameter estimation for binary NAT models to constrained gradient descent for compressing target CPTs over multivalued variables. We reveal challenges associated with persistent leaky causes and develop a novel framework for PCI pattern extraction when persistent leaky causes exist. The effectiveness of the CPT compression is validated experimentally.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off