n‐Type SnSe2 Oriented‐Nanoplate‐Based Pellets for High Thermoelectric Performance

n‐Type SnSe2 Oriented‐Nanoplate‐Based Pellets for High Thermoelectric Performance It is reported that electron doped n‐type SnSe2 nanoplates show promising thermoelectric performance at medium temperatures. After simultaneous introduction of Se deficiency and Cl doping, the Fermi level of SnSe2 shifts toward the conduction band, resulting in two orders of magnitude increase in carrier concentration and a transition to degenerate transport behavior. In addition, all‐scale hierarchical phonon scattering centers, such as point defects, nanograin boundaries, stacking faults, and the layered nanostructures, cooperate to produce very low lattice thermal conductivity. As a result, an enhanced in‐plane thermoelectric figure of merit ZTmax of 0.63 is achieved for a 1.5 at% Cl doped SnSe1.95 pellet at 673 K, which is much higher than the corresponding in‐plane ZT of pure SnSe2 (0.08). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Loading next page...
 
/lp/wiley/n-type-snse2-oriented-nanoplate-based-pellets-for-high-thermoelectric-pPu9QOnYuF
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
D.O.I.
10.1002/aenm.201702167
Publisher site
See Article on Publisher Site

Abstract

It is reported that electron doped n‐type SnSe2 nanoplates show promising thermoelectric performance at medium temperatures. After simultaneous introduction of Se deficiency and Cl doping, the Fermi level of SnSe2 shifts toward the conduction band, resulting in two orders of magnitude increase in carrier concentration and a transition to degenerate transport behavior. In addition, all‐scale hierarchical phonon scattering centers, such as point defects, nanograin boundaries, stacking faults, and the layered nanostructures, cooperate to produce very low lattice thermal conductivity. As a result, an enhanced in‐plane thermoelectric figure of merit ZTmax of 0.63 is achieved for a 1.5 at% Cl doped SnSe1.95 pellet at 673 K, which is much higher than the corresponding in‐plane ZT of pure SnSe2 (0.08).

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off