Multicriterion optimal electric drive vehicle selection based on lifecycle emission and lifecycle cost

Multicriterion optimal electric drive vehicle selection based on lifecycle emission and lifecycle... This research paper examines the optimal choice among conventional gasoline vehicles, hybrid electric vehicles (HEVs), plug‐in HEVs (PHEV), and full‐battery EVs taking into account the different characteristics of these vehicles, such as cost, emissions per mile, and vehicle miles to be traveled between refueling and acceleration time. The existing challenges for wide‐spread deployment of EVs are availability of charging infrastructure, higher cost, long time for charging, and lower travel millage compared with conventional vehicles. Statistical data are considered for determining the spatially varying average daily vehicle miles traveled (VMT) across the United States, which, together with charging behavior, can influence the optimal choice among EV with different travel ranges. Two alternative cases for charging are examined: (1) home‐only charging and (2) home plus work charging. The motivation of this work is to select the optimal EV among their types when lifecycle cost and lifecycle emission are considered. The optimization model seeks to minimize total lifecycle cost and emissions for each level of VMT per day. It is found that when lifecycle cost is the sole objective, HEV is usually the best choice, especially for higher VMT levels. When lifecycle greenhouse gas emission is the sole objective, PHEV1 (PHEV with 1 charging station) is the optimal solution over a wide range of VMTs. The outcome of this provides a roadmap for the selection of EVs based on their annual VMT to reduce both lifecycle emission and lifecycle cost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

Multicriterion optimal electric drive vehicle selection based on lifecycle emission and lifecycle cost

Loading next page...
 
/lp/wiley/multicriterion-optimal-electric-drive-vehicle-selection-based-on-d0zvnENw5t
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.3937
Publisher site
See Article on Publisher Site

Abstract

This research paper examines the optimal choice among conventional gasoline vehicles, hybrid electric vehicles (HEVs), plug‐in HEVs (PHEV), and full‐battery EVs taking into account the different characteristics of these vehicles, such as cost, emissions per mile, and vehicle miles to be traveled between refueling and acceleration time. The existing challenges for wide‐spread deployment of EVs are availability of charging infrastructure, higher cost, long time for charging, and lower travel millage compared with conventional vehicles. Statistical data are considered for determining the spatially varying average daily vehicle miles traveled (VMT) across the United States, which, together with charging behavior, can influence the optimal choice among EV with different travel ranges. Two alternative cases for charging are examined: (1) home‐only charging and (2) home plus work charging. The motivation of this work is to select the optimal EV among their types when lifecycle cost and lifecycle emission are considered. The optimization model seeks to minimize total lifecycle cost and emissions for each level of VMT per day. It is found that when lifecycle cost is the sole objective, HEV is usually the best choice, especially for higher VMT levels. When lifecycle greenhouse gas emission is the sole objective, PHEV1 (PHEV with 1 charging station) is the optimal solution over a wide range of VMTs. The outcome of this provides a roadmap for the selection of EVs based on their annual VMT to reduce both lifecycle emission and lifecycle cost.

Journal

International Journal of Energy ResearchWiley

Published: Jan 25, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off