Multi‐jet electrospinning with high‐throughput using a coaxial grooved nozzle and two fluids

Multi‐jet electrospinning with high‐throughput using a coaxial grooved nozzle and two fluids To broaden the applications of the electrospinning technique, high throughput is one of the primary goals of many researchers. To overcome the throughput limitation, we have introduced coaxial grooved nozzles. By using a coaxial grooved nozzle and two fluids, including polyethylene oxide (PEO), we are able to achieve stable multi‐jet operation and relatively high throughput. The multi‐jets are initiated by the multi‐jet mode of the inner fluid, and share the total flow rate of the polymer solution. We have investigated the operating conditions for various flow rate combinations of two fluids. The morphology of the resulting nanofibers is uniform without bead formation. The fibers have an average diameter of about 350 nm. POLYM. ENG. SCI., 58:416–421, 2018. © 2017 Society of Plastics Engineers http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Engineering & Science Wiley

Multi‐jet electrospinning with high‐throughput using a coaxial grooved nozzle and two fluids

Loading next page...
 
/lp/wiley/multi-jet-electrospinning-with-high-throughput-using-a-coaxial-grooved-eFZOpLkf6E
Publisher
Wiley
Copyright
© 2018 Society of Plastics Engineers
ISSN
0032-3888
eISSN
1548-2634
D.O.I.
10.1002/pen.24588
Publisher site
See Article on Publisher Site

Abstract

To broaden the applications of the electrospinning technique, high throughput is one of the primary goals of many researchers. To overcome the throughput limitation, we have introduced coaxial grooved nozzles. By using a coaxial grooved nozzle and two fluids, including polyethylene oxide (PEO), we are able to achieve stable multi‐jet operation and relatively high throughput. The multi‐jets are initiated by the multi‐jet mode of the inner fluid, and share the total flow rate of the polymer solution. We have investigated the operating conditions for various flow rate combinations of two fluids. The morphology of the resulting nanofibers is uniform without bead formation. The fibers have an average diameter of about 350 nm. POLYM. ENG. SCI., 58:416–421, 2018. © 2017 Society of Plastics Engineers

Journal

Polymer Engineering & ScienceWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off