Multi‐compartmental diffusion characterization of the human cervical spinal cord in vivo using the spherical mean technique

Multi‐compartmental diffusion characterization of the human cervical spinal cord in vivo using... The purpose of this work was to evaluate the feasibility and reproducibility of the spherical mean technique (SMT), a multi‐compartmental diffusion model, in the spinal cord of healthy controls, and to assess its ability to improve spinal cord characterization in multiple sclerosis (MS) patients at 3 T. SMT was applied in the cervical spinal cord of eight controls and six relapsing‐remitting MS patients. SMT provides an elegant framework to model the apparent axonal volume fraction vax, intrinsic diffusivity Dax, and extra‐axonal transverse diffusivity Dex_perp (which is estimated as a function of vax and Dax) without confounds related to complex fiber orientation distribution that reside in diffusion MRI modeling. SMT's reproducibility was assessed with two different scans within a month, and SMT‐derived indices in healthy and MS cohorts were compared. The influence of acquisition scheme on SMT was also evaluated. SMT's vax, Dax, and Dex_perp measurements all showed high reproducibility. A decrease in vax was observed at the site of lesions and normal appearing white matter (p < 0.05), and trends towards a decreased Dax and increased Dex_perp were seen. Importantly, a twofold reduction in acquisition yielded similarly high accuracy with SMT. SMT provides a fast, reproducible, and accurate method to improve characterization of the cervical spinal cord, and may have clinical potential for MS patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png NMR in Biomedicine (Electronic) Wiley

Multi‐compartmental diffusion characterization of the human cervical spinal cord in vivo using the spherical mean technique

Loading next page...
 
/lp/wiley/multi-compartmental-diffusion-characterization-of-the-human-cervical-FmQ4wFrGXq
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0952-3480
eISSN
1099-1492
D.O.I.
10.1002/nbm.3894
Publisher site
See Article on Publisher Site

Abstract

The purpose of this work was to evaluate the feasibility and reproducibility of the spherical mean technique (SMT), a multi‐compartmental diffusion model, in the spinal cord of healthy controls, and to assess its ability to improve spinal cord characterization in multiple sclerosis (MS) patients at 3 T. SMT was applied in the cervical spinal cord of eight controls and six relapsing‐remitting MS patients. SMT provides an elegant framework to model the apparent axonal volume fraction vax, intrinsic diffusivity Dax, and extra‐axonal transverse diffusivity Dex_perp (which is estimated as a function of vax and Dax) without confounds related to complex fiber orientation distribution that reside in diffusion MRI modeling. SMT's reproducibility was assessed with two different scans within a month, and SMT‐derived indices in healthy and MS cohorts were compared. The influence of acquisition scheme on SMT was also evaluated. SMT's vax, Dax, and Dex_perp measurements all showed high reproducibility. A decrease in vax was observed at the site of lesions and normal appearing white matter (p < 0.05), and trends towards a decreased Dax and increased Dex_perp were seen. Importantly, a twofold reduction in acquisition yielded similarly high accuracy with SMT. SMT provides a fast, reproducible, and accurate method to improve characterization of the cervical spinal cord, and may have clinical potential for MS patients.

Journal

NMR in Biomedicine (Electronic)Wiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial