Moth‐flame optimization algorithm optimized dual‐mode controller for multiarea hybrid sources AGC system

Moth‐flame optimization algorithm optimized dual‐mode controller for multiarea hybrid sources... A new algorithm called moth‐flame optimization (MFO) algorithm is proposed to optimize a dual‐mode controller (DMC) for a multiarea hybrid interconnected power system. Initially, a 2‐area nonreheat system is considered. The optimum gains of DMC and proportional‐integral controller are optimized using the MFO algorithm. The superiority of the proposed approach is established while comparing the results with genetic algorithm, bacterial forging optimization algorithm, differential evolution, and hybrid bacterial forging optimization algorithm particle swarm optimization for the same system. The proposed approach is further extended to 2 unequal areas of a 6‐unit hybrid‐sources interconnected power system. The optimum gain of DMC and sliding mode controller (SMC) is optimized with MFO algorithm. The performance of an MFO tuned DMC is compared with particle swarm optimization and genetic algorithm tuned DMC, MFO tuned SMC, and teaching‐learning–based optimization optimized SMC for the same system. Furthermore, robustness analysis is performed by varying the system parameters from their nominal values. It is observed that the optimum gains obtained for nominal condition need not be reset for a wide variation in system parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optimal Control Applications and Methods Wiley

Moth‐flame optimization algorithm optimized dual‐mode controller for multiarea hybrid sources AGC system

Loading next page...
 
/lp/wiley/moth-flame-optimization-algorithm-optimized-dual-mode-controller-for-NoTYUZROfT
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0143-2087
eISSN
1099-1514
D.O.I.
10.1002/oca.2373
Publisher site
See Article on Publisher Site

Abstract

A new algorithm called moth‐flame optimization (MFO) algorithm is proposed to optimize a dual‐mode controller (DMC) for a multiarea hybrid interconnected power system. Initially, a 2‐area nonreheat system is considered. The optimum gains of DMC and proportional‐integral controller are optimized using the MFO algorithm. The superiority of the proposed approach is established while comparing the results with genetic algorithm, bacterial forging optimization algorithm, differential evolution, and hybrid bacterial forging optimization algorithm particle swarm optimization for the same system. The proposed approach is further extended to 2 unequal areas of a 6‐unit hybrid‐sources interconnected power system. The optimum gain of DMC and sliding mode controller (SMC) is optimized with MFO algorithm. The performance of an MFO tuned DMC is compared with particle swarm optimization and genetic algorithm tuned DMC, MFO tuned SMC, and teaching‐learning–based optimization optimized SMC for the same system. Furthermore, robustness analysis is performed by varying the system parameters from their nominal values. It is observed that the optimum gains obtained for nominal condition need not be reset for a wide variation in system parameters.

Journal

Optimal Control Applications and MethodsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial