Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method

Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and... In this work, different sol solutions with various titanium tetraisopropoxide (TIP)/glacial acetic acid ratios in 2‐propanol with 5 wt % poly(vinyl pyrrolidone) (PVP) (Mw = 360,000 g/mol) were prepared and electrospun. Composition of the prepared sols and as‐spun TiO2/PVP nanofibers were determined by Fourier transform infrared and Raman spectroscopy methods. Morphology of the electrospun TiO2/PVP nanofibers was studied by scanning electron microscopy and transmission electron microscopy (TEM) techniques. Rheometry measurements of the sol solutions showed decrease of viscosity upon the addition of TIP to the polymer solutions with constant polymer and acid concentrations. The sol solution having the lowest viscosity (at shear rate 10 s−1) but the highest TIP/glacial acetic acid ratio showed beaded nanofibers morphology when electrospun under 10 and 12 kV applied voltage while injection rate, needle tip to collector distance, and needle gauge were kept constant. However, smooth electrospun TiO2/PVP composite nanofibers with the average nanofibers diameters (148 ± 79 nm) were achieved under the same condition when applied voltage increased to 15 kV. TEM micrographs of the electrospun TiO2/PVP nanofiber showed that the TiO2 particles with continuous structure are formed at the middle of the nanofiber and distributed along its axis. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46337. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Polymer Science Wiley

Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method

Loading next page...
 
/lp/wiley/morphology-enhancement-of-tio2-pvp-composite-nanofibers-based-on-c9iLU1nRxI
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0021-8995
eISSN
1097-4628
D.O.I.
10.1002/app.46337
Publisher site
See Article on Publisher Site

Abstract

In this work, different sol solutions with various titanium tetraisopropoxide (TIP)/glacial acetic acid ratios in 2‐propanol with 5 wt % poly(vinyl pyrrolidone) (PVP) (Mw = 360,000 g/mol) were prepared and electrospun. Composition of the prepared sols and as‐spun TiO2/PVP nanofibers were determined by Fourier transform infrared and Raman spectroscopy methods. Morphology of the electrospun TiO2/PVP nanofibers was studied by scanning electron microscopy and transmission electron microscopy (TEM) techniques. Rheometry measurements of the sol solutions showed decrease of viscosity upon the addition of TIP to the polymer solutions with constant polymer and acid concentrations. The sol solution having the lowest viscosity (at shear rate 10 s−1) but the highest TIP/glacial acetic acid ratio showed beaded nanofibers morphology when electrospun under 10 and 12 kV applied voltage while injection rate, needle tip to collector distance, and needle gauge were kept constant. However, smooth electrospun TiO2/PVP composite nanofibers with the average nanofibers diameters (148 ± 79 nm) were achieved under the same condition when applied voltage increased to 15 kV. TEM micrographs of the electrospun TiO2/PVP nanofiber showed that the TiO2 particles with continuous structure are formed at the middle of the nanofiber and distributed along its axis. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46337.

Journal

Journal of Applied Polymer ScienceWiley

Published: Jan 15, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial