Models of soil moisture dynamics in ecohydrology: A comparative study

Models of soil moisture dynamics in ecohydrology: A comparative study An accurate description of plant ecology requires an understanding of the interplay between precipitation, infiltration, and evapotranspiration. A simple model for soil moisture dynamics, which does not resolve spatial variations in saturation, facilitates analytical expressions of soil and plant behavior as functions of climate, soil, and vegetation characteristics. Proper application of such a model requires knowledge of the conditions under which the underlying simplifications are appropriate. To address this issue, we compare predictions of evapotranspiration and root zone saturation over a growing season from a simple bucket‐filling model to those from a more complex, vertically resolved model. Dimensionless groups of key parameters measure the quality of the match between the models. For a climate, soil, and woody plant characteristic of an African savanna the predictions of the two models are quite similar if the plant can extract water from locally wet regions to make up for roots in dry portions of the soil column; if not, the match is poor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Models of soil moisture dynamics in ecohydrology: A comparative study

Loading next page...
 
/lp/wiley/models-of-soil-moisture-dynamics-in-ecohydrology-a-comparative-study-088s7ZMwsK
Publisher
Wiley
Copyright
Copyright © 2002 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/2001WR000826
Publisher site
See Article on Publisher Site

Abstract

An accurate description of plant ecology requires an understanding of the interplay between precipitation, infiltration, and evapotranspiration. A simple model for soil moisture dynamics, which does not resolve spatial variations in saturation, facilitates analytical expressions of soil and plant behavior as functions of climate, soil, and vegetation characteristics. Proper application of such a model requires knowledge of the conditions under which the underlying simplifications are appropriate. To address this issue, we compare predictions of evapotranspiration and root zone saturation over a growing season from a simple bucket‐filling model to those from a more complex, vertically resolved model. Dimensionless groups of key parameters measure the quality of the match between the models. For a climate, soil, and woody plant characteristic of an African savanna the predictions of the two models are quite similar if the plant can extract water from locally wet regions to make up for roots in dry portions of the soil column; if not, the match is poor.

Journal

Water Resources ResearchWiley

Published: Sep 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off