Modelling the potential effects of climate change on calcareous grasslands in Atlantic Europe

Modelling the potential effects of climate change on calcareous grasslands in Atlantic Europe Aim This study aims to assess the sensitivity of calcareous grassland vegetation to climate change and to indicate the most probable direction of change. Location The study area was a region of Britain, Ireland, France and Spain, centred on the Bay of Biscay, which was defined using a land classification based on climatic criteria. Methods Vegetation was sampled in the field, with additional data collected on soils, climate, management and land cover. The vegetation samples were ordinated by detrended correspondence analysis in order to explore the main gradients present and as a basis for modelling changes. Environmental data were summarized by ordination techniques, with the scores generated used to predict the current vegetation score on the first two ordination axes by multiple regression. The model was then manipulated to represent a 2 °C increase in temperature and resulting shifts in the vegetation samples in terms of their species composition assessed. Results There was a good general agreement between the original vegetation ordination axis scores and those predicted by the model, the latter of which were based on environmental data alone. Following a 2 °C increase in temperature, the predicted changes in the ordination space were demonstrated to be subtle, consisting of small shifts towards vegetation associated with warmer conditions, representing distances 100 km or less on the ground. Main conclusions The models are simple but nevertheless provide a useful basis for the investigation of potential vegetation change. The shifts in the ordination space represent more minor changes than those predicted in previous studies. This suggests that the potential for major change is lower when environmental factors such as soil and management are considered in addition to climate. The potential for change is also reduced when vegetation is considered as a whole rather than on an individual species basis, due to both interspecific interactions and interactions with environmental factors acting as constraints. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Modelling the potential effects of climate change on calcareous grasslands in Atlantic Europe

Loading next page...
 
/lp/wiley/modelling-the-potential-effects-of-climate-change-on-calcareous-qOa8eJKq22
Publisher
Wiley
Copyright
Copyright © 2000 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1046/j.1365-2699.2000.00400.x
Publisher site
See Article on Publisher Site

Abstract

Aim This study aims to assess the sensitivity of calcareous grassland vegetation to climate change and to indicate the most probable direction of change. Location The study area was a region of Britain, Ireland, France and Spain, centred on the Bay of Biscay, which was defined using a land classification based on climatic criteria. Methods Vegetation was sampled in the field, with additional data collected on soils, climate, management and land cover. The vegetation samples were ordinated by detrended correspondence analysis in order to explore the main gradients present and as a basis for modelling changes. Environmental data were summarized by ordination techniques, with the scores generated used to predict the current vegetation score on the first two ordination axes by multiple regression. The model was then manipulated to represent a 2 °C increase in temperature and resulting shifts in the vegetation samples in terms of their species composition assessed. Results There was a good general agreement between the original vegetation ordination axis scores and those predicted by the model, the latter of which were based on environmental data alone. Following a 2 °C increase in temperature, the predicted changes in the ordination space were demonstrated to be subtle, consisting of small shifts towards vegetation associated with warmer conditions, representing distances 100 km or less on the ground. Main conclusions The models are simple but nevertheless provide a useful basis for the investigation of potential vegetation change. The shifts in the ordination space represent more minor changes than those predicted in previous studies. This suggests that the potential for major change is lower when environmental factors such as soil and management are considered in addition to climate. The potential for change is also reduced when vegetation is considered as a whole rather than on an individual species basis, due to both interspecific interactions and interactions with environmental factors acting as constraints.

Journal

Journal of BiogeographyWiley

Published: Mar 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off