Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation

Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch... A model was set up to describe the production of amylovorin L471 by Lactobacillus amylovorus DCE 471, on a laboratory scale, in which the cells are grown in MRS (deMau‐Rogosa‐Sharpe) broth. The main features of the dynamic model are : (i) increase of the biomass according to a logistic equation ; (ii) non‐growth‐associated consumption of substrate (maintenance metabolism) ; and (iii) primary metabolite kinetics for the bacteriocin production. The main purpose was to set up a simple empirical model to examine growth and bacteriocin production in different conditions. Parameters estimated from a fermentation with 20 g l−1 glucose (w/v) could be used to predict the evolution of cell dry mass, glucose and lactic acid concentration of fermentations, performed with 5, 30, 40 and 60 g l−1 initial glucose. The influence of the operating temperature (30, 37 and 45 °C) on the model parameters was also investigated. The proposed model was able to describe growth and bacteriocin production in all cases. The specific bacteriocin production rate was found to vary strongly with temperature, with 30 °C as the best value. Variation of the operating temperature from 37 to 30 °C appeared to significantly enhance the specific bacteriocin production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Microbiology Wiley

Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation

Loading next page...
 
/lp/wiley/modelling-the-growth-and-bacteriocin-production-by-lactobacillus-JQdO3IfaVL
Publisher
Wiley
Copyright
Society for Applied Microbiology
ISSN
1364-5072
eISSN
1365-2672
DOI
10.1046/j.1365-2672.1998.00266.x
Publisher site
See Article on Publisher Site

Abstract

A model was set up to describe the production of amylovorin L471 by Lactobacillus amylovorus DCE 471, on a laboratory scale, in which the cells are grown in MRS (deMau‐Rogosa‐Sharpe) broth. The main features of the dynamic model are : (i) increase of the biomass according to a logistic equation ; (ii) non‐growth‐associated consumption of substrate (maintenance metabolism) ; and (iii) primary metabolite kinetics for the bacteriocin production. The main purpose was to set up a simple empirical model to examine growth and bacteriocin production in different conditions. Parameters estimated from a fermentation with 20 g l−1 glucose (w/v) could be used to predict the evolution of cell dry mass, glucose and lactic acid concentration of fermentations, performed with 5, 30, 40 and 60 g l−1 initial glucose. The influence of the operating temperature (30, 37 and 45 °C) on the model parameters was also investigated. The proposed model was able to describe growth and bacteriocin production in all cases. The specific bacteriocin production rate was found to vary strongly with temperature, with 30 °C as the best value. Variation of the operating temperature from 37 to 30 °C appeared to significantly enhance the specific bacteriocin production.

Journal

Journal of Applied MicrobiologyWiley

Published: Feb 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off