Modelling the effect of cultivation on seed movement with application to the prediction of weed seedling emergence

Modelling the effect of cultivation on seed movement with application to the prediction of weed... Summary 1. Effective weed control is essential in field vegetables. However, the range of available herbicides has been continually reduced for commercial and toxicological reasons over the last decade. In order to predict the optimum weeding period and to apply alternative control strategies successfully, a realistic estimate is needed of the size, timing and duration of a flush of weed emergence in a crop. The soil weed seed bank is the primary source of future weed populations, and therefore provides a unique resource for predictive management purposes. 2. Models have previously been developed to predict the emergence of weed species from different burial depths and to simulate the vertical movement of weed seeds following seed bed preparation. 3. In this investigation a vertical movement model was extended to include the effects of four cultivation implements on the horizontal displacement of weed seeds. These implements were a rotavator, a spring tine, a spader and a power harrow. 4. The rotavator caused a backward movement of seeds; neither the spring tine nor spader had a significant effect on the horizontal displacement of seeds; whilst the power harrow had the greatest capacity to move seeds forward > 0·5 m in the soil. 5. This investigation combined depth of burial and vertical movement models to simulate the likely outcome of different sequences of spring tine, spader, rotavator and power harrow on subsequent weed seedling emergence. For example, sequences including multiple passes of a spader increased the numbers of emerged seedlings, whilst for those where the rotavator dominated the sequence, a marked reduction in seedling numbers was predicted. The findings of a series of simulations are viewed in the light of existing methods of weed control based on soil cultivation, for example the stale seed bed technique. 6. The combined model provides the basis for a decision support system to aid the control of weeds. Additionally, it provides a research tool to improve understanding of the dynamics of the weed seed bank and the implications of seed bed preparations for future populations. The combined model has helped to identify areas of weed seed ecology requiring further study, essential for the development of true dynamic models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Modelling the effect of cultivation on seed movement with application to the prediction of weed seedling emergence

Journal of Applied Ecology, Volume 36 (5) – Oct 1, 1999

Loading next page...
 
/lp/wiley/modelling-the-effect-of-cultivation-on-seed-movement-with-application-tja99m87Dt
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
D.O.I.
10.1046/j.1365-2664.1999.00438.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1. Effective weed control is essential in field vegetables. However, the range of available herbicides has been continually reduced for commercial and toxicological reasons over the last decade. In order to predict the optimum weeding period and to apply alternative control strategies successfully, a realistic estimate is needed of the size, timing and duration of a flush of weed emergence in a crop. The soil weed seed bank is the primary source of future weed populations, and therefore provides a unique resource for predictive management purposes. 2. Models have previously been developed to predict the emergence of weed species from different burial depths and to simulate the vertical movement of weed seeds following seed bed preparation. 3. In this investigation a vertical movement model was extended to include the effects of four cultivation implements on the horizontal displacement of weed seeds. These implements were a rotavator, a spring tine, a spader and a power harrow. 4. The rotavator caused a backward movement of seeds; neither the spring tine nor spader had a significant effect on the horizontal displacement of seeds; whilst the power harrow had the greatest capacity to move seeds forward > 0·5 m in the soil. 5. This investigation combined depth of burial and vertical movement models to simulate the likely outcome of different sequences of spring tine, spader, rotavator and power harrow on subsequent weed seedling emergence. For example, sequences including multiple passes of a spader increased the numbers of emerged seedlings, whilst for those where the rotavator dominated the sequence, a marked reduction in seedling numbers was predicted. The findings of a series of simulations are viewed in the light of existing methods of weed control based on soil cultivation, for example the stale seed bed technique. 6. The combined model provides the basis for a decision support system to aid the control of weeds. Additionally, it provides a research tool to improve understanding of the dynamics of the weed seed bank and the implications of seed bed preparations for future populations. The combined model has helped to identify areas of weed seed ecology requiring further study, essential for the development of true dynamic models.

Journal

Journal of Applied EcologyWiley

Published: Oct 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off