Modelling species distributions in Britain: a hierarchical integration of climate and land‐cover data

Modelling species distributions in Britain: a hierarchical integration of climate and... A modelling framework for studying the combined effects of climate and land‐cover changes on the distribution of species is presented. The model integrates land‐cover data into a correlative bioclimatic model in a scale‐dependent hierarchical manner, whereby Artificial Neural Networks are used to characterise species’ climatic requirements at the European scale and land‐cover requirements at the British scale. The model has been tested against an alternative non‐hierarchical approach and has been applied to four plant species in Britain: Rhynchospora alba, Erica tetralix, Salix herbacea and Geranium sylvaticum. Predictive performance has been evaluated using Cohen's Kappa statistic and the area under the Receiver Operating Characteristic curve, and a novel approach to identifying thresholds of occurrence which utilises three levels of confidence has been applied. Results demonstrate reasonable to good predictive performance for each species, with the main patterns of distribution simulated at both 10 km and 1 km resolutions. The incorporation of land‐cover data was found to significantly improve purely climate‐driven predictions for R. alba and E. tetralix, enabling regions with suitable climate but unsuitable land‐cover to be identified. The study thus provides an insight into the roles of climate and land‐cover as determinants of species’ distributions and it is demonstrated that the modelling approach presented can provide a useful framework for making predictions of distributions under scenarios of changing climate and land‐cover type. The paper confirms the potential utility of multi‐scale approaches for understanding environmental limitations to species’ distributions, and demonstrates that the search for environmental correlates with species’ distributions must be addressed at an appropriate spatial scale. Our study contributes to the mounting evidence that hierarchical schemes are characteristic of ecological systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecography Wiley

Modelling species distributions in Britain: a hierarchical integration of climate and land‐cover data

Ecography, Volume 27 (3) – Jun 1, 2004

Loading next page...
 
/lp/wiley/modelling-species-distributions-in-britain-a-hierarchical-integration-QZ3a0YpqYn
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0906-7590
eISSN
1600-0587
D.O.I.
10.1111/j.0906-7590.2004.03740.x
Publisher site
See Article on Publisher Site

Abstract

A modelling framework for studying the combined effects of climate and land‐cover changes on the distribution of species is presented. The model integrates land‐cover data into a correlative bioclimatic model in a scale‐dependent hierarchical manner, whereby Artificial Neural Networks are used to characterise species’ climatic requirements at the European scale and land‐cover requirements at the British scale. The model has been tested against an alternative non‐hierarchical approach and has been applied to four plant species in Britain: Rhynchospora alba, Erica tetralix, Salix herbacea and Geranium sylvaticum. Predictive performance has been evaluated using Cohen's Kappa statistic and the area under the Receiver Operating Characteristic curve, and a novel approach to identifying thresholds of occurrence which utilises three levels of confidence has been applied. Results demonstrate reasonable to good predictive performance for each species, with the main patterns of distribution simulated at both 10 km and 1 km resolutions. The incorporation of land‐cover data was found to significantly improve purely climate‐driven predictions for R. alba and E. tetralix, enabling regions with suitable climate but unsuitable land‐cover to be identified. The study thus provides an insight into the roles of climate and land‐cover as determinants of species’ distributions and it is demonstrated that the modelling approach presented can provide a useful framework for making predictions of distributions under scenarios of changing climate and land‐cover type. The paper confirms the potential utility of multi‐scale approaches for understanding environmental limitations to species’ distributions, and demonstrates that the search for environmental correlates with species’ distributions must be addressed at an appropriate spatial scale. Our study contributes to the mounting evidence that hierarchical schemes are characteristic of ecological systems.

Journal

EcographyWiley

Published: Jun 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off