Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland

Modelling potential impacts of climate change on the spatial distribution of zonal forest... Abstract. A spatially explicit, climate‐sensitive vegetation model is presented to simulate both present and future distribution of potential natural vegetation types in Switzerland at the level of zonal forest communities. The model has two versions: (1) a ‘basic’ version using geographical region, aspect, bedrock (represented by soil pH), and elevation, and (2) a ‘climate‐sensitive’ version obtained by replacing elevation (complex environmental gradient) with temperature (climatic factor). Version 2 is used to predict vegetation response under different (today's and projected) climatic conditions. Two regional climate scenarios are applied: (1) assuming an annual mean temperature increase of 1.1 — 1.4 °C, and (2) assuming an increase of 2.2 — 2.75 °C. Both scenarios result in significant changes of the spatial vegetation patterns as compared with today's climatic conditions. In scenario 1, ca. 33 % of the sample points remain unchanged in terms of the simulated zonal forest community; in scenario 2, virtually all sample points change. The most noticeable changes occur on the Swiss Plateau with Carpinion forests (zonal vegetation of present colline belt) expanding to areas that are occupied today by submontane and low‐montane Fagus forests. To estimate the reliability of the simulation, quantitative (comparison with field mapping) and qualitative (comparison with climate types in the Alpine region) tests are performed and the main limitations of the approach are evaluated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland

Loading next page...
 
/lp/wiley/modelling-potential-impacts-of-climate-change-on-the-spatial-qwmKTD1z6g
Publisher
Wiley
Copyright
1995 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
D.O.I.
10.2307/3236221
Publisher site
See Article on Publisher Site

Abstract

Abstract. A spatially explicit, climate‐sensitive vegetation model is presented to simulate both present and future distribution of potential natural vegetation types in Switzerland at the level of zonal forest communities. The model has two versions: (1) a ‘basic’ version using geographical region, aspect, bedrock (represented by soil pH), and elevation, and (2) a ‘climate‐sensitive’ version obtained by replacing elevation (complex environmental gradient) with temperature (climatic factor). Version 2 is used to predict vegetation response under different (today's and projected) climatic conditions. Two regional climate scenarios are applied: (1) assuming an annual mean temperature increase of 1.1 — 1.4 °C, and (2) assuming an increase of 2.2 — 2.75 °C. Both scenarios result in significant changes of the spatial vegetation patterns as compared with today's climatic conditions. In scenario 1, ca. 33 % of the sample points remain unchanged in terms of the simulated zonal forest community; in scenario 2, virtually all sample points change. The most noticeable changes occur on the Swiss Plateau with Carpinion forests (zonal vegetation of present colline belt) expanding to areas that are occupied today by submontane and low‐montane Fagus forests. To estimate the reliability of the simulation, quantitative (comparison with field mapping) and qualitative (comparison with climate types in the Alpine region) tests are performed and the main limitations of the approach are evaluated.

Journal

Journal of Vegetation ScienceWiley

Published: Apr 1, 1995

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off