Modelling of hydraulic fracturing and fluid flow change in saturated porous domains

Modelling of hydraulic fracturing and fluid flow change in saturated porous domains The underlying research work aims to develop a numerical model of pressure‐driven fracturing of saturated porous media. This is based on the combination of the phase‐field modelling (PFM) scheme together with a continuum‐mechanical approach of multi‐phase materials. The proposed modelling framework accounts for the crack nucleation and propagation in the solid matrix of the porous material, as well as the fluid flow change in the cracked region. The macroscopic description of the saturated porous material is based on the theory of porous media (TPM), where the proposed scheme assumes a steady‐state behaviour (quasi‐static) and neglects all thermal and chemical effects. Additionally, it assumes an open system with possible fluid mass production from external source. Special focus is laid on the description of the interface and change of the volume fractions and the permeability parameter between the porous domain and the crack. Finally, a numerical example using the finite element method is presented and compared with experimental data to show the ability of the proposed modelling strategy in capturing the basic features of hydraulic fracturing. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Modelling of hydraulic fracturing and fluid flow change in saturated porous domains

Loading next page...
 
/lp/wiley/modelling-of-hydraulic-fracturing-and-fluid-flow-change-in-saturated-NIpuGQniK3
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710028
Publisher site
See Article on Publisher Site

Abstract

The underlying research work aims to develop a numerical model of pressure‐driven fracturing of saturated porous media. This is based on the combination of the phase‐field modelling (PFM) scheme together with a continuum‐mechanical approach of multi‐phase materials. The proposed modelling framework accounts for the crack nucleation and propagation in the solid matrix of the porous material, as well as the fluid flow change in the cracked region. The macroscopic description of the saturated porous material is based on the theory of porous media (TPM), where the proposed scheme assumes a steady‐state behaviour (quasi‐static) and neglects all thermal and chemical effects. Additionally, it assumes an open system with possible fluid mass production from external source. Special focus is laid on the description of the interface and change of the volume fractions and the permeability parameter between the porous domain and the crack. Finally, a numerical example using the finite element method is presented and compared with experimental data to show the ability of the proposed modelling strategy in capturing the basic features of hydraulic fracturing. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off