Modelling mean annual sediment yield using a distributed approach

Modelling mean annual sediment yield using a distributed approach In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10–5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques. Copyright © 2001 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Surface Processes and Landforms Wiley

Modelling mean annual sediment yield using a distributed approach

Loading next page...
 
/lp/wiley/modelling-mean-annual-sediment-yield-using-a-distributed-approach-WjhuOOO0Iq
Publisher
Wiley
Copyright
Copyright © 2001 John Wiley & Sons, Ltd.
ISSN
0197-9337
eISSN
1096-9837
D.O.I.
10.1002/esp.275
Publisher site
See Article on Publisher Site

Abstract

In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10–5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques. Copyright © 2001 John Wiley & Sons, Ltd.

Journal

Earth Surface Processes and LandformsWiley

Published: Oct 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off