MODELING VEGETATION AS A DYNAMIC COMPONENT IN SOIL‐VEGETATION‐ATMOSPHERE TRANSFER SCHEMES AND HYDROLOGICAL MODELS

MODELING VEGETATION AS A DYNAMIC COMPONENT IN SOIL‐VEGETATION‐ATMOSPHERE TRANSFER SCHEMES AND... Vegetation affects the climate by modifying the energy, momentum, and hydrologic balance of the land surface. Soil‐vegetation‐atmosphere transfer (SVAT) schemes explicitly consider the role of vegetation in affecting water and energy balance by taking into account its physiological properties, in particular, leaf area index (LAI) and stomatal conductance. These two physiological properties are also the basis of evapotranspiration parameterizations in physically based hydrological models. However, most current SVAT schemes and hydrological models do not parameterize vegetation as a dynamic component. The seasonal evolution of LAI is prescribed, and monthly LAI values are kept constant year after year. The effect of CO2 on the structure and physiological properties of vegetation is also neglected, which is likely to be important in transient climate simulations with increasing CO2 concentration and for hydrological models that are used to study climate change impact. The net carbon uptake by vegetation, which is the difference between photosynthesis and respiration, is allocated to leaves, stems, and roots. Carbon allocation to leaves determines their biomass and LAI. The timing of bud burst, leaf senescence, and leaf abscission (i.e., the phenology) determines the length of the growing season. Together, photosynthesis, respiration, allocation, and phenology, which are all strongly dependent on environmental conditions, make vegetation a dynamic component. This paper (1) familiarizes the reader with the basic physical processes associated with the functioning of the terrestrial biosphere using simple nonbiogeochemical terminology, (2) summarizes the range of parameterizations used to model these processes in the current generation of process‐based vegetation and plant growth models and discusses their suitability for inclusion in SVAT schemes and hydrological models, and (3) illustrates the manner in which the coupling of vegetation models and SVAT schemes/hydrological models may be accomplished. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews of Geophysics Wiley

MODELING VEGETATION AS A DYNAMIC COMPONENT IN SOIL‐VEGETATION‐ATMOSPHERE TRANSFER SCHEMES AND HYDROLOGICAL MODELS

Reviews of Geophysics, Volume 40 (2) – May 1, 2002

Loading next page...
 
/lp/wiley/modeling-vegetation-as-a-dynamic-component-in-soil-vegetation-042ce88Oj0
Publisher
Wiley
Copyright
Copyright © 2002 by the American Geophysical Union.
ISSN
8755-1209
eISSN
1944-9208
D.O.I.
10.1029/2001RG000103
Publisher site
See Article on Publisher Site

Abstract

Vegetation affects the climate by modifying the energy, momentum, and hydrologic balance of the land surface. Soil‐vegetation‐atmosphere transfer (SVAT) schemes explicitly consider the role of vegetation in affecting water and energy balance by taking into account its physiological properties, in particular, leaf area index (LAI) and stomatal conductance. These two physiological properties are also the basis of evapotranspiration parameterizations in physically based hydrological models. However, most current SVAT schemes and hydrological models do not parameterize vegetation as a dynamic component. The seasonal evolution of LAI is prescribed, and monthly LAI values are kept constant year after year. The effect of CO2 on the structure and physiological properties of vegetation is also neglected, which is likely to be important in transient climate simulations with increasing CO2 concentration and for hydrological models that are used to study climate change impact. The net carbon uptake by vegetation, which is the difference between photosynthesis and respiration, is allocated to leaves, stems, and roots. Carbon allocation to leaves determines their biomass and LAI. The timing of bud burst, leaf senescence, and leaf abscission (i.e., the phenology) determines the length of the growing season. Together, photosynthesis, respiration, allocation, and phenology, which are all strongly dependent on environmental conditions, make vegetation a dynamic component. This paper (1) familiarizes the reader with the basic physical processes associated with the functioning of the terrestrial biosphere using simple nonbiogeochemical terminology, (2) summarizes the range of parameterizations used to model these processes in the current generation of process‐based vegetation and plant growth models and discusses their suitability for inclusion in SVAT schemes and hydrological models, and (3) illustrates the manner in which the coupling of vegetation models and SVAT schemes/hydrological models may be accomplished.

Journal

Reviews of GeophysicsWiley

Published: May 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off