Modeling multiple interactions with a Markov random field in query expansion for session search

Modeling multiple interactions with a Markov random field in query expansion for session search How to automatically understand and answer users' questions (eg, queries issued to a search engine) expressed with natural language has become an important yet difficult problem across the research fields of information retrieval and artificial intelligence. In a typical interactive Web search scenario, namely, session search, to obtain relevant information, the user usually interacts with the search engine for several rounds in the forms of, eg, query reformulations, clicks, and skips. These interactions are usually mixed and intertwined with each other in a complex way. For the ideal goal, an intelligent search engine can be seen as an artificial intelligence agent that is able to infer what information the user needs from these interactions. However, there still exists a big gap between the current state of the art and this goal. In this paper, in order to bridge the gap, we propose a Markov random field–based approach to capture dependence relations among interactions, queries, and clicked documents for automatic query expansion (as a way of inferring the information needs of the user). An extensive empirical evaluation is conducted on large‐scale web search data sets, and the results demonstrate the effectiveness of our proposed models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley

Modeling multiple interactions with a Markov random field in query expansion for session search

Loading next page...
 
/lp/wiley/modeling-multiple-interactions-with-a-markov-random-field-in-query-qfuSVFT9Is
Publisher
Wiley
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12154
Publisher site
See Article on Publisher Site

Abstract

How to automatically understand and answer users' questions (eg, queries issued to a search engine) expressed with natural language has become an important yet difficult problem across the research fields of information retrieval and artificial intelligence. In a typical interactive Web search scenario, namely, session search, to obtain relevant information, the user usually interacts with the search engine for several rounds in the forms of, eg, query reformulations, clicks, and skips. These interactions are usually mixed and intertwined with each other in a complex way. For the ideal goal, an intelligent search engine can be seen as an artificial intelligence agent that is able to infer what information the user needs from these interactions. However, there still exists a big gap between the current state of the art and this goal. In this paper, in order to bridge the gap, we propose a Markov random field–based approach to capture dependence relations among interactions, queries, and clicked documents for automatic query expansion (as a way of inferring the information needs of the user). An extensive empirical evaluation is conducted on large‐scale web search data sets, and the results demonstrate the effectiveness of our proposed models.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off