Modeling and simulation of particle dispersion in dense particle‐laden flow

Modeling and simulation of particle dispersion in dense particle‐laden flow Traditional drag force coefficient with regard to modeling gas–particle flows is generally established on the semiempirical or full empirical measurement data with isotropic hypothesis resulting in neglection of true particle dispersions, especially for anisotropic characteristics. A developed drag force coefficient to fully consider the anisotropics was applied to model and simulate dense particle‐laden flows. Coupled with a unified second‐order moment, 2‐fluid turbulent model consisting of a set of fluctuation velocity Reynolds transport equations was employed for predicting dense particle‐laden flows in pseudo‐2D horizontal chamber. Simulated results showed that they are in good agreement with measurement data. Particle Reynolds stresses have been redistributed by the momentum transfer interaction term between gas and particle phases, the turbulent diffusion term, and the particle collision term. Compared with traditional Wen's model, horizontal and vertical root‐mean‐square of particle velocities exhibited much more flatter and wider distribution behaviors. Due to limitation of two‐dimensional model and wall conditions, errors near wall regions should be improved in future work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Asia-Pacific Journal of Chemical Engineering Wiley

Modeling and simulation of particle dispersion in dense particle‐laden flow

Loading next page...
 
/lp/wiley/modeling-and-simulation-of-particle-dispersion-in-dense-particle-laden-ckO8GDVTBw
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Curtin University of Technology and John Wiley & Sons, Ltd.
ISSN
1932-2135
eISSN
1932-2143
D.O.I.
10.1002/apj.2187
Publisher site
See Article on Publisher Site

Abstract

Traditional drag force coefficient with regard to modeling gas–particle flows is generally established on the semiempirical or full empirical measurement data with isotropic hypothesis resulting in neglection of true particle dispersions, especially for anisotropic characteristics. A developed drag force coefficient to fully consider the anisotropics was applied to model and simulate dense particle‐laden flows. Coupled with a unified second‐order moment, 2‐fluid turbulent model consisting of a set of fluctuation velocity Reynolds transport equations was employed for predicting dense particle‐laden flows in pseudo‐2D horizontal chamber. Simulated results showed that they are in good agreement with measurement data. Particle Reynolds stresses have been redistributed by the momentum transfer interaction term between gas and particle phases, the turbulent diffusion term, and the particle collision term. Compared with traditional Wen's model, horizontal and vertical root‐mean‐square of particle velocities exhibited much more flatter and wider distribution behaviors. Due to limitation of two‐dimensional model and wall conditions, errors near wall regions should be improved in future work.

Journal

Asia-Pacific Journal of Chemical EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off