Model‐based unscented Kalman filter observer design for lithium‐ion battery state of charge estimation

Model‐based unscented Kalman filter observer design for lithium‐ion battery state of charge... Accurate battery state‐of‐charge is essential for both driver notification and battery management units reliability in electric vehicle/hybrid electric vehicle. It is necessary to develop a robust state of charge (SOC) estimation approach to cope with nonlinear dynamic battery systems. This paper proposed an estimation method to identify the SOC online based on equivalent circuit battery model and unscented Kalman filter technique. Firstly, the parameters of dynamic battery model are identified offline and validated through typical electric vehicle road operation to guarantee its precision. Then the performance with respect to converge time, observer accuracy, robustness against system modeling errors, and mismatched initial SOC guess values is investigated. The accuracy of proposed estimation algorithm is validated under improved hybrid power pulse characterization test and New European Driving Cycle. Experiment and numerical simulation results clearly demonstrate that the proposed method is highly reliable with good robustness to different operating conditions and battery aging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

Model‐based unscented Kalman filter observer design for lithium‐ion battery state of charge estimation

Loading next page...
 
/lp/wiley/model-based-unscented-kalman-filter-observer-design-for-lithium-ion-k4GfQ8OZ9a
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.3954
Publisher site
See Article on Publisher Site

Abstract

Accurate battery state‐of‐charge is essential for both driver notification and battery management units reliability in electric vehicle/hybrid electric vehicle. It is necessary to develop a robust state of charge (SOC) estimation approach to cope with nonlinear dynamic battery systems. This paper proposed an estimation method to identify the SOC online based on equivalent circuit battery model and unscented Kalman filter technique. Firstly, the parameters of dynamic battery model are identified offline and validated through typical electric vehicle road operation to guarantee its precision. Then the performance with respect to converge time, observer accuracy, robustness against system modeling errors, and mismatched initial SOC guess values is investigated. The accuracy of proposed estimation algorithm is validated under improved hybrid power pulse characterization test and New European Driving Cycle. Experiment and numerical simulation results clearly demonstrate that the proposed method is highly reliable with good robustness to different operating conditions and battery aging.

Journal

International Journal of Energy ResearchWiley

Published: Jan 25, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off