Model‐based unscented Kalman filter observer design for lithium‐ion battery state of charge estimation

Model‐based unscented Kalman filter observer design for lithium‐ion battery state of charge... Accurate battery state‐of‐charge is essential for both driver notification and battery management units reliability in electric vehicle/hybrid electric vehicle. It is necessary to develop a robust state of charge (SOC) estimation approach to cope with nonlinear dynamic battery systems. This paper proposed an estimation method to identify the SOC online based on equivalent circuit battery model and unscented Kalman filter technique. Firstly, the parameters of dynamic battery model are identified offline and validated through typical electric vehicle road operation to guarantee its precision. Then the performance with respect to converge time, observer accuracy, robustness against system modeling errors, and mismatched initial SOC guess values is investigated. The accuracy of proposed estimation algorithm is validated under improved hybrid power pulse characterization test and New European Driving Cycle. Experiment and numerical simulation results clearly demonstrate that the proposed method is highly reliable with good robustness to different operating conditions and battery aging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

Model‐based unscented Kalman filter observer design for lithium‐ion battery state of charge estimation

Loading next page...
 
/lp/wiley/model-based-unscented-kalman-filter-observer-design-for-lithium-ion-k4GfQ8OZ9a
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.3954
Publisher site
See Article on Publisher Site

Abstract

Accurate battery state‐of‐charge is essential for both driver notification and battery management units reliability in electric vehicle/hybrid electric vehicle. It is necessary to develop a robust state of charge (SOC) estimation approach to cope with nonlinear dynamic battery systems. This paper proposed an estimation method to identify the SOC online based on equivalent circuit battery model and unscented Kalman filter technique. Firstly, the parameters of dynamic battery model are identified offline and validated through typical electric vehicle road operation to guarantee its precision. Then the performance with respect to converge time, observer accuracy, robustness against system modeling errors, and mismatched initial SOC guess values is investigated. The accuracy of proposed estimation algorithm is validated under improved hybrid power pulse characterization test and New European Driving Cycle. Experiment and numerical simulation results clearly demonstrate that the proposed method is highly reliable with good robustness to different operating conditions and battery aging.

Journal

International Journal of Energy ResearchWiley

Published: Jan 25, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial