Model‐based uncertainty in species range prediction

Model‐based uncertainty in species range prediction Aim Many attempts to predict the potential range of species rely on environmental niche (or ‘bioclimate envelope’) modelling, yet the effects of using different niche‐based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions, identify key reasons why model output may differ and discuss the implications that model uncertainty has for policy‐guiding applications. Location The Western Cape of South Africa. Methods We applied nine of the most widely used modelling techniques to model potential distributions under current and predicted future climate for four species (including two subspecies) of Proteaceae. Each model was built using an identical set of five input variables and distribution data for 3996 sampled sites. We compare model predictions by testing agreement between observed and simulated distributions for the present day (using the area under the receiver operating characteristic curve (AUC) and kappa statistics) and by assessing consistency in predictions of range size changes under future climate (using cluster analysis). Results Our analyses show significant differences between predictions from different models, with predicted changes in range size by 2030 differing in both magnitude and direction (e.g. from 92% loss to 322% gain). We explain differences with reference to two characteristics of the modelling techniques: data input requirements (presence/absence vs. presence‐only approaches) and assumptions made by each algorithm when extrapolating beyond the range of data used to build the model. The effects of these factors should be carefully considered when using this modelling approach to predict species ranges. Main conclusions We highlight an important source of uncertainty in assessments of the impacts of climate change on biodiversity and emphasize that model predictions should be interpreted in policy‐guiding applications along with a full appreciation of uncertainty. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Loading next page...
 
/lp/wiley/model-based-uncertainty-in-species-range-prediction-2vJ0upyBRz
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1111/j.1365-2699.2006.01460.x
Publisher site
See Article on Publisher Site

Abstract

Aim Many attempts to predict the potential range of species rely on environmental niche (or ‘bioclimate envelope’) modelling, yet the effects of using different niche‐based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions, identify key reasons why model output may differ and discuss the implications that model uncertainty has for policy‐guiding applications. Location The Western Cape of South Africa. Methods We applied nine of the most widely used modelling techniques to model potential distributions under current and predicted future climate for four species (including two subspecies) of Proteaceae. Each model was built using an identical set of five input variables and distribution data for 3996 sampled sites. We compare model predictions by testing agreement between observed and simulated distributions for the present day (using the area under the receiver operating characteristic curve (AUC) and kappa statistics) and by assessing consistency in predictions of range size changes under future climate (using cluster analysis). Results Our analyses show significant differences between predictions from different models, with predicted changes in range size by 2030 differing in both magnitude and direction (e.g. from 92% loss to 322% gain). We explain differences with reference to two characteristics of the modelling techniques: data input requirements (presence/absence vs. presence‐only approaches) and assumptions made by each algorithm when extrapolating beyond the range of data used to build the model. The effects of these factors should be carefully considered when using this modelling approach to predict species ranges. Main conclusions We highlight an important source of uncertainty in assessments of the impacts of climate change on biodiversity and emphasize that model predictions should be interpreted in policy‐guiding applications along with a full appreciation of uncertainty.

Journal

Journal of BiogeographyWiley

Published: Oct 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off