Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: Neural network modeling and response surface methodology optimization

Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye:... In this research, a novel magnetic mesoporous adsorbent with mixed phase of Fe2O3/Mn3O4 nanocomposite was prepared by a facile precipitating method and characterized extensively. The prepared nanocomposite was used as adsorbent for toxic methyl orange (MO) dye removal from aqua matrix considering its high surface area (178.27 m2/g) with high saturation magnetization (23.07 emu/g). Maximum dye adsorption occurs at solution pH 2.0 and the electrostatic attraction between anionic form of MO dye molecules and the positively charged nanocomposite surface is the main driving force behind this adsorption. Response surface methodology (RSM) was used for optimizing the process variables and maximum MO removal of 97.67% is obtained at optimum experimental condition with contact time, adsorbent dose and initial MO dye concentration of 45 min, 0.87 g/l and 116 mg/l, respectively. Artificial neural network (ANN) model with optimum topology of 3–5–1 was developed for predicting the MO removal (%), which has shown higher predictive ability than RSM model. Maximum adsorption capacity of this nanocomposite was found to be 322.58 mg/g from Langmuir isotherm model. Kinetic studies reveal the applicability of second‐order kinetic model with contribution of intra‐particle diffusion in this process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: Neural network modeling and response surface methodology optimization

Loading next page...
 
/lp/wiley/mixed-phase-fe2o3-mn3o4-magnetic-nanocomposite-for-enhanced-adsorption-eFTpla4x0W
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4186
Publisher site
See Article on Publisher Site

Abstract

In this research, a novel magnetic mesoporous adsorbent with mixed phase of Fe2O3/Mn3O4 nanocomposite was prepared by a facile precipitating method and characterized extensively. The prepared nanocomposite was used as adsorbent for toxic methyl orange (MO) dye removal from aqua matrix considering its high surface area (178.27 m2/g) with high saturation magnetization (23.07 emu/g). Maximum dye adsorption occurs at solution pH 2.0 and the electrostatic attraction between anionic form of MO dye molecules and the positively charged nanocomposite surface is the main driving force behind this adsorption. Response surface methodology (RSM) was used for optimizing the process variables and maximum MO removal of 97.67% is obtained at optimum experimental condition with contact time, adsorbent dose and initial MO dye concentration of 45 min, 0.87 g/l and 116 mg/l, respectively. Artificial neural network (ANN) model with optimum topology of 3–5–1 was developed for predicting the MO removal (%), which has shown higher predictive ability than RSM model. Maximum adsorption capacity of this nanocomposite was found to be 322.58 mg/g from Langmuir isotherm model. Kinetic studies reveal the applicability of second‐order kinetic model with contribution of intra‐particle diffusion in this process.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off