Mitochondrial phylogeographic structure of the white‐browed piculet ( Sasia ochracea ): cryptic genetic differentiation and endemism in Indochina

Mitochondrial phylogeographic structure of the white‐browed piculet ( Sasia ochracea ): cryptic... Aim Our understanding of the geographic patterns of gene flow between populations of birds in the Indo‐Malayan faunal region is surprisingly poor compared with that in other parts of the world. A thorough knowledge of general patterns of phylogeographic structure is, however, of utmost importance for conservation purposes. Species with poor dispersal capabilities could serve as indicators of endemism and genetic isolation in the Indochinese subregion. From their morphology (tiny size, short tail, short and rounded wings), piculets of the genus Sasia are inferred to have poor dispersal capabilities, and thus form a suitable focal species. This study analysed the pattern of genetic variation within the White‐browed Piculet (Sasia ochracea). Location Southeast Asia, north of the Isthmus of Kra. Methods We sampled 43 individuals throughout the breeding range of S. ochracea. DNA was extracted both from fresh tissues (n = 15) and from toe pads from ancient museum skins (n = 28). We amplified a 801‐bp fragment of the mitochondrial ND2 gene to reconstruct the phylogeographic history of the White‐browed Piculet. The sequence data were analysed using Bayesian inference, statistical parsimony, and population genetics methods (analysis of molecular variance, mismatch distributions). We estimated the amount of ongoing gene flow between populations using the coalescent‐based method implemented in Mdiv. Results The analysis of molecular variance indicated that the current taxonomy does not adequately reflect the amount of genetic variation within S. ochracea, as the great majority of genetic variation was nested within the nominal subspecies, which is distributed from Nepal to southern Vietnam. Bayesian inference analyses and haplotype networks suggested the occurrence of five main lineages that are strongly correlated with geography. Our coalescent‐based analyses indicated a very limited amount of ongoing gene flow between these five lineages. Our dating analyses suggested that the genetic structuring probably occurred during the last 400,000 years. Main conclusions Our analyses revealed that S. ochracea is composed of at least five lineages: south Vietnam (South Annam and ‘Cochinchina’), India and Nepal, Myanmar and India, the remainder of Indochina, and probably southern Myanmar (Tenasserim). We strongly recommend that studies aiming to understand the phylogeographic structure within Indo‐Malayan species sample these areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Mitochondrial phylogeographic structure of the white‐browed piculet ( Sasia ochracea ): cryptic genetic differentiation and endemism in Indochina

Loading next page...
 
/lp/wiley/mitochondrial-phylogeographic-structure-of-the-white-browed-piculet-Ktv6e5khv6
Publisher
Wiley
Copyright
© 2007 The Authors
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1111/j.1365-2699.2007.01811.x
Publisher site
See Article on Publisher Site

Abstract

Aim Our understanding of the geographic patterns of gene flow between populations of birds in the Indo‐Malayan faunal region is surprisingly poor compared with that in other parts of the world. A thorough knowledge of general patterns of phylogeographic structure is, however, of utmost importance for conservation purposes. Species with poor dispersal capabilities could serve as indicators of endemism and genetic isolation in the Indochinese subregion. From their morphology (tiny size, short tail, short and rounded wings), piculets of the genus Sasia are inferred to have poor dispersal capabilities, and thus form a suitable focal species. This study analysed the pattern of genetic variation within the White‐browed Piculet (Sasia ochracea). Location Southeast Asia, north of the Isthmus of Kra. Methods We sampled 43 individuals throughout the breeding range of S. ochracea. DNA was extracted both from fresh tissues (n = 15) and from toe pads from ancient museum skins (n = 28). We amplified a 801‐bp fragment of the mitochondrial ND2 gene to reconstruct the phylogeographic history of the White‐browed Piculet. The sequence data were analysed using Bayesian inference, statistical parsimony, and population genetics methods (analysis of molecular variance, mismatch distributions). We estimated the amount of ongoing gene flow between populations using the coalescent‐based method implemented in Mdiv. Results The analysis of molecular variance indicated that the current taxonomy does not adequately reflect the amount of genetic variation within S. ochracea, as the great majority of genetic variation was nested within the nominal subspecies, which is distributed from Nepal to southern Vietnam. Bayesian inference analyses and haplotype networks suggested the occurrence of five main lineages that are strongly correlated with geography. Our coalescent‐based analyses indicated a very limited amount of ongoing gene flow between these five lineages. Our dating analyses suggested that the genetic structuring probably occurred during the last 400,000 years. Main conclusions Our analyses revealed that S. ochracea is composed of at least five lineages: south Vietnam (South Annam and ‘Cochinchina’), India and Nepal, Myanmar and India, the remainder of Indochina, and probably southern Myanmar (Tenasserim). We strongly recommend that studies aiming to understand the phylogeographic structure within Indo‐Malayan species sample these areas.

Journal

Journal of BiogeographyWiley

Published: Mar 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off