Minkowski‐type distance measures for generalized orthopair fuzzy sets

Minkowski‐type distance measures for generalized orthopair fuzzy sets The generalized orthopair fuzzy set inherits the virtues of intuitionistic fuzzy set and Pythagorean fuzzy set in relaxing the restriction on the support for and support against. The very lax requirement provides decision makers great freedom in expressing their beliefs about membership grades, which makes generalized orthopair fuzzy sets having a wide scope of application in practice. In this paper, we present the Minkowski‐type distance measures, including Hamming, Euclidean, and Chebyshev distances, for q‐rung orthopair fuzzy sets. First, we introduce the Minkowski‐type distances of q‐rung orthopair membership grades, based on which we can rank orthopairs. Second, we propose several distances over q‐rung orthopair fuzzy sets on a finite discrete universe and subsequently discuss their applications to multiattribute decision‐making problems. Then we extend these results to a continuous universe, both bounded and unbounded cases are considered. Some illustrative examples are employed to substantiate the conceptual arguments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Systems Wiley

Minkowski‐type distance measures for generalized orthopair fuzzy sets

Loading next page...
 
/lp/wiley/minkowski-type-distance-measures-for-generalized-orthopair-fuzzy-sets-O60DlkIrlv
Publisher
Wiley
Copyright
Copyright © 2018 Wiley Periodicals, Inc.
ISSN
0884-8173
eISSN
1098-111X
D.O.I.
10.1002/int.21968
Publisher site
See Article on Publisher Site

Abstract

The generalized orthopair fuzzy set inherits the virtues of intuitionistic fuzzy set and Pythagorean fuzzy set in relaxing the restriction on the support for and support against. The very lax requirement provides decision makers great freedom in expressing their beliefs about membership grades, which makes generalized orthopair fuzzy sets having a wide scope of application in practice. In this paper, we present the Minkowski‐type distance measures, including Hamming, Euclidean, and Chebyshev distances, for q‐rung orthopair fuzzy sets. First, we introduce the Minkowski‐type distances of q‐rung orthopair membership grades, based on which we can rank orthopairs. Second, we propose several distances over q‐rung orthopair fuzzy sets on a finite discrete universe and subsequently discuss their applications to multiattribute decision‐making problems. Then we extend these results to a continuous universe, both bounded and unbounded cases are considered. Some illustrative examples are employed to substantiate the conceptual arguments.

Journal

International Journal of Intelligent SystemsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off