Minimum information for dielectric measurements of biological tissues (MINDER): A framework for repeatable and reusable data

Minimum information for dielectric measurements of biological tissues (MINDER): A framework for... The dielectric properties of biological tissues characterise the interaction of human tissues with electromagnetic (EM) fields. Accurate knowledge of the dielectric properties of tissues are vital in EM‐based therapeutic and diagnostic techniques, and for assessing the safety of wireless devices. Despite the importance of these properties, the field has suffered from inconsistencies in reported data. The dielectric measurement process for tissues is known to be affected by both measurement confounders and clinical confounders; however, adequate metadata is often lacking in the literature. For this reason, this work proposes a standard, called Minimum Information for Dielectric Measurements of Biological Tissues (MINDER). In the MINDER model, the minimum types of raw data and metadata needed to interpret or replicate a dielectric study are identified and described. Alongside the minimum information model, a controlled vocabulary for metadata parameters is proposed. We also provide an example of this model applied to a dielectric measurement scenario on a biological tissue sample. The MINDER model enables reproducibility of measurements, ease of interpreting and re‐using data, and comparison of data across studies. Further, this standard framework will support dielectric databases, with data searchable through metadata parameters such as temperature, frequency range, tissue type, and tissue state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Rf and Microwave Computer-Aided Engineering Wiley

Minimum information for dielectric measurements of biological tissues (MINDER): A framework for repeatable and reusable data

Loading next page...
 
/lp/wiley/minimum-information-for-dielectric-measurements-of-biological-tissues-IgLFXqD3kG
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1096-4290
eISSN
1099-047X
D.O.I.
10.1002/mmce.21201
Publisher site
See Article on Publisher Site

Abstract

The dielectric properties of biological tissues characterise the interaction of human tissues with electromagnetic (EM) fields. Accurate knowledge of the dielectric properties of tissues are vital in EM‐based therapeutic and diagnostic techniques, and for assessing the safety of wireless devices. Despite the importance of these properties, the field has suffered from inconsistencies in reported data. The dielectric measurement process for tissues is known to be affected by both measurement confounders and clinical confounders; however, adequate metadata is often lacking in the literature. For this reason, this work proposes a standard, called Minimum Information for Dielectric Measurements of Biological Tissues (MINDER). In the MINDER model, the minimum types of raw data and metadata needed to interpret or replicate a dielectric study are identified and described. Alongside the minimum information model, a controlled vocabulary for metadata parameters is proposed. We also provide an example of this model applied to a dielectric measurement scenario on a biological tissue sample. The MINDER model enables reproducibility of measurements, ease of interpreting and re‐using data, and comparison of data across studies. Further, this standard framework will support dielectric databases, with data searchable through metadata parameters such as temperature, frequency range, tissue type, and tissue state.

Journal

International Journal of Rf and Microwave Computer-Aided EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial