Microvascular Permeability in Diabetes and Insulin Resistance

Microvascular Permeability in Diabetes and Insulin Resistance ABSTRACT Microvascular barrier injury has been implicated in the initiation and progress of end organ complications of diabetic mellitus. Plasma leakage and fluid retention are seen in various tissues of diabetic patients or animals at the early stages of the disease before structural microangiopathy can be detected. Clinical and experimental evidence suggests that hyperglycemia, often accompanied with insulin deficiency or insulin resistance, causes impaired autoregulation and increased permeability in microvessels. Multiple molecular pathways have been identified as contributors to the altered fluid homeostasis, including increased polyol flux that promotes oxidative stress, advanced glycation that leads to carbonyl stress, and excessive glucose metabolism that results in protein kinase C activation. These abnormal metabolic activities are associated with the production of pro‐inflammatory cytokines and growth factors, which can stimulate an array of signaling reactions and structural changes at the endothelial barrier and ultimately cause microvascular leakage. Interventions that manipulate these metabolic and inflammatory pathways have demonstrated efficacy in delaying the progress of diabetic microvascular complications; however, their direct effects and mechanisms of action on the microcirculation remain elusive. A deeper understanding of the molecular basis of diabetes‐induced endothelial barrier dysfunction will provide a framework for the development of new therapeutic targets to treat this chronic and debilitating disease process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microcirculation Wiley

Microvascular Permeability in Diabetes and Insulin Resistance

Loading next page...
 
/lp/wiley/microvascular-permeability-in-diabetes-and-insulin-resistance-nlouP8pTWG
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Microvascular barrier injury has been implicated in the initiation and progress of end organ complications of diabetic mellitus. Plasma leakage and fluid retention are seen in various tissues of diabetic patients or animals at the early stages of the disease before structural microangiopathy can be detected. Clinical and experimental evidence suggests that hyperglycemia, often accompanied with insulin deficiency or insulin resistance, causes impaired autoregulation and increased permeability in microvessels. Multiple molecular pathways have been identified as contributors to the altered fluid homeostasis, including increased polyol flux that promotes oxidative stress, advanced glycation that leads to carbonyl stress, and excessive glucose metabolism that results in protein kinase C activation. These abnormal metabolic activities are associated with the production of pro‐inflammatory cytokines and growth factors, which can stimulate an array of signaling reactions and structural changes at the endothelial barrier and ultimately cause microvascular leakage. Interventions that manipulate these metabolic and inflammatory pathways have demonstrated efficacy in delaying the progress of diabetic microvascular complications; however, their direct effects and mechanisms of action on the microcirculation remain elusive. A deeper understanding of the molecular basis of diabetes‐induced endothelial barrier dysfunction will provide a framework for the development of new therapeutic targets to treat this chronic and debilitating disease process.

Journal

MicrocirculationWiley

Published: Jun 7, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off