Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Microglia expressing interleukin‐13 undergo cell death and contribute to neuronal survival in vivo

Microglia expressing interleukin‐13 undergo cell death and contribute to neuronal survival in vivo How to minimize brain inflammation is pathophysiologically important, since inflammation induced by microglial activation can exacerbate brain damage. In the present report, we show that injection of lipopolysaccharide (LPS) into the rat cortex led to increased levels of interleukin‐13 (IL‐13) and to IL‐13 immunoreactivity, followed by the substantial loss of microglia at 3 days post‐LPS. IL‐13 levels in LPS‐injected cortex reached a peak at 12 h post‐injection, remained elevated at 24 h, and returned to basal levels at day 4. In parallel, IL‐13 immunoreactivity was detected as early as 12 h post‐LPS and maintained up to 24 h; it disappeared at 4 days. Surprisingly, IL‐13 immunoreactivity was detected exclusively in microglia, but not in neurons or astrocytes. Following treatment with LPS in vitro, IL‐13 expression was also induced in microglia in the presence of neurons, but not in the presence of astrocytes or in cultured pure microglia alone. In experiments designed to determine the involvement of IL‐13 in microglia cell death, IL‐13‐neutralizing antibodies significantly increased survival of activated microglia at 3 days post‐LPS. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor‐α (TNF‐α) was sustained in activated microglia and neuronal cell death was consequently increased. Taken together, the present study is the first to demonstrate the endogenous expression of IL‐13 in LPS‐activated microglia in vivo, and to demonstrate that neurons may be required for IL‐13 expression in microglia. Our data strongly suggest that IL‐13 may control brain inflammation by inducing the death of activated microglia in vivo, resulting in an enhancement of neuronal survival. © 2004 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glia Wiley

Microglia expressing interleukin‐13 undergo cell death and contribute to neuronal survival in vivo

Loading next page...
 
/lp/wiley/microglia-expressing-interleukin-13-undergo-cell-death-and-contribute-HiXSTqVwKN
Publisher
Wiley
Copyright
Copyright © 2004 Wiley‐Liss, Inc.
ISSN
0894-1491
eISSN
1098-1136
DOI
10.1002/glia.10357
pmid
15042582
Publisher site
See Article on Publisher Site

Abstract

How to minimize brain inflammation is pathophysiologically important, since inflammation induced by microglial activation can exacerbate brain damage. In the present report, we show that injection of lipopolysaccharide (LPS) into the rat cortex led to increased levels of interleukin‐13 (IL‐13) and to IL‐13 immunoreactivity, followed by the substantial loss of microglia at 3 days post‐LPS. IL‐13 levels in LPS‐injected cortex reached a peak at 12 h post‐injection, remained elevated at 24 h, and returned to basal levels at day 4. In parallel, IL‐13 immunoreactivity was detected as early as 12 h post‐LPS and maintained up to 24 h; it disappeared at 4 days. Surprisingly, IL‐13 immunoreactivity was detected exclusively in microglia, but not in neurons or astrocytes. Following treatment with LPS in vitro, IL‐13 expression was also induced in microglia in the presence of neurons, but not in the presence of astrocytes or in cultured pure microglia alone. In experiments designed to determine the involvement of IL‐13 in microglia cell death, IL‐13‐neutralizing antibodies significantly increased survival of activated microglia at 3 days post‐LPS. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor‐α (TNF‐α) was sustained in activated microglia and neuronal cell death was consequently increased. Taken together, the present study is the first to demonstrate the endogenous expression of IL‐13 in LPS‐activated microglia in vivo, and to demonstrate that neurons may be required for IL‐13 expression in microglia. Our data strongly suggest that IL‐13 may control brain inflammation by inducing the death of activated microglia in vivo, resulting in an enhancement of neuronal survival. © 2004 Wiley‐Liss, Inc.

Journal

GliaWiley

Published: Apr 15, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month