Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material

Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material

Loading next page...
 
/lp/wiley/microencapsulation-of-coco-fatty-acid-mixture-for-thermal-energy-NJZoKzKpPm
Publisher
Wiley
Copyright
Copyright © 2005 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.1177
Publisher site
See Article on Publisher Site

Abstract

Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd.

Journal

International Journal of Energy ResearchWiley

Published: Aug 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off