# MHD Stokes flow and heat transfer in a lid‐driven square cavity under horizontal magnetic field

MHD Stokes flow and heat transfer in a lid‐driven square cavity under horizontal magnetic field This study considers the steady flow of a viscous, incompressible and electrically conducting fluid in a lid‐driven square cavity under the effect of a uniform horizontally applied magnetic field. The governing equations are obtained from the Navier‐Stokes equations including buoyancy and Lorentz force terms and the energy equation including Joule heating and viscous dissipation terms. These equations are solved iteratively in terms of velocity components, stream function, vorticity, temperature, and pressure by using radial basis function approximation. Particular solution, which is approximated by radial basis functions to satisfy both differential equation and boundary conditions, becomes the solution of the differential equation itself. Vorticity boundary conditions are obtained from stream function equation using finite difference scheme. Normal derivative of pressure is taken as zero on the boundary. The numerical results are obtained for several values of Hartmann number and Grashof number for the Stokes approximation (Re << 1). The results show that when the viscous dissipation is present, the flow and isolines concentrate through the cold wall forming boundary layers as Grashof number increases. An increase in the magnetic field intensity retards the effect of buoyancy force in the square cavity, whereas the movement of the upper lid causes buoyancy force to be dominant. The solution is obtained in a considerably low computational expense through the use of radial basis function approximations for the MHD equations. Copyright © 2017 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Methods in the Applied Sciences Wiley

# MHD Stokes flow and heat transfer in a lid‐driven square cavity under horizontal magnetic field

, Volume 41 (6) – Jan 1, 2018
10 pages

/lp/wiley/mhd-stokes-flow-and-heat-transfer-in-a-lid-driven-square-cavity-under-AsPMkgrecf
Publisher
Wiley Subscription Services, Inc., A Wiley Company
ISSN
0170-4214
eISSN
1099-1476
D.O.I.
10.1002/mma.4321
Publisher site
See Article on Publisher Site

### Abstract

This study considers the steady flow of a viscous, incompressible and electrically conducting fluid in a lid‐driven square cavity under the effect of a uniform horizontally applied magnetic field. The governing equations are obtained from the Navier‐Stokes equations including buoyancy and Lorentz force terms and the energy equation including Joule heating and viscous dissipation terms. These equations are solved iteratively in terms of velocity components, stream function, vorticity, temperature, and pressure by using radial basis function approximation. Particular solution, which is approximated by radial basis functions to satisfy both differential equation and boundary conditions, becomes the solution of the differential equation itself. Vorticity boundary conditions are obtained from stream function equation using finite difference scheme. Normal derivative of pressure is taken as zero on the boundary. The numerical results are obtained for several values of Hartmann number and Grashof number for the Stokes approximation (Re << 1). The results show that when the viscous dissipation is present, the flow and isolines concentrate through the cold wall forming boundary layers as Grashof number increases. An increase in the magnetic field intensity retards the effect of buoyancy force in the square cavity, whereas the movement of the upper lid causes buoyancy force to be dominant. The solution is obtained in a considerably low computational expense through the use of radial basis function approximations for the MHD equations. Copyright © 2017 John Wiley & Sons, Ltd.

### Journal

Mathematical Methods in the Applied SciencesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations