Methods for estimating long‐distance dispersal

Methods for estimating long‐distance dispersal Long‐distance dispersal (LDD) includes events in which propagules arrive, but do not necessarily establish, at a site far removed from their origin. Although important in a variety of ecological contexts, the system‐specific nature of LDD makes “far removed” difficult to quantify, partly, but not exclusively, because of inherent uncertainty typically involved with the highly stochastic LDD processes. We critically review the main methods employed in studies of dispersal, in order to facilitate the evaluation of their pertinence to specific aspects of LDD research. Using a novel classification framework, we identify six main methodological groups: biogeographical; Eulerian and Lagrangian movement/redistributional; short‐term and long‐term genetic analyses; and modeling. We briefly discuss the strengths and weaknesses of the most promising methods available for estimation of LDD, illustrating them with examples from current studies. The rarity of LDD events will continue to make collecting, analyzing, and interpreting the necessary data difficult, and a simple and comprehensive definition of LDD will remain elusive. However, considerable advances have been made in some methodological areas, such as miniaturization of tracking devices, elaboration of stable isotope and genetic analyses, and refinement of mechanistic models. Combinations of methods are increasingly used to provide improved insight on LDD from multiple angles. However, human activities substantially increase the variety of long‐distance transport avenues, making the estimation of LDD even more challenging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oikos Wiley

Methods for estimating long‐distance dispersal

Loading next page...
 
/lp/wiley/methods-for-estimating-long-distance-dispersal-PoNWw6BG6f
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0030-1299
eISSN
1600-0706
DOI
10.1034/j.1600-0706.2003.12146.x
Publisher site
See Article on Publisher Site

Abstract

Long‐distance dispersal (LDD) includes events in which propagules arrive, but do not necessarily establish, at a site far removed from their origin. Although important in a variety of ecological contexts, the system‐specific nature of LDD makes “far removed” difficult to quantify, partly, but not exclusively, because of inherent uncertainty typically involved with the highly stochastic LDD processes. We critically review the main methods employed in studies of dispersal, in order to facilitate the evaluation of their pertinence to specific aspects of LDD research. Using a novel classification framework, we identify six main methodological groups: biogeographical; Eulerian and Lagrangian movement/redistributional; short‐term and long‐term genetic analyses; and modeling. We briefly discuss the strengths and weaknesses of the most promising methods available for estimation of LDD, illustrating them with examples from current studies. The rarity of LDD events will continue to make collecting, analyzing, and interpreting the necessary data difficult, and a simple and comprehensive definition of LDD will remain elusive. However, considerable advances have been made in some methodological areas, such as miniaturization of tracking devices, elaboration of stable isotope and genetic analyses, and refinement of mechanistic models. Combinations of methods are increasingly used to provide improved insight on LDD from multiple angles. However, human activities substantially increase the variety of long‐distance transport avenues, making the estimation of LDD even more challenging.

Journal

OikosWiley

Published: Nov 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off