Mediterranean nutrient balance and episodes of anoxia

Mediterranean nutrient balance and episodes of anoxia We examine the causes of anoxia in regions such as the Eastern Mediterranean, which have exchange over sills with adjacent basins. Box models show that the concentration of the limiting nutrient is the major determinant of deep oxygen levels. The most effective way of increasing nutrient concentrations to the point where anoxia occurs is to change the flow pattern across the sills ventilating the basins. With a sill exchange pattern such as that in the present Strait of Sicily, it is difficult to obtain anoxia in the Eastern Mediterranean without also driving the Western Mediterranean to low oxygen and high nutrient levels. Episodes of anoxia in the Eastern Mediterranean are associated with a freshening of surface waters. A reversal in flow directions, presumably resulting from the observed freshening, will inevitably lead to anoxia associated with increased sediment burial rates of the limiting nutrient and will leave the Western Mediterranean largely unaffected, in keeping with the observational evidence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

Mediterranean nutrient balance and episodes of anoxia

Loading next page...
 
/lp/wiley/mediterranean-nutrient-balance-and-episodes-of-anoxia-MmJV5q9501
Publisher
Wiley
Copyright
Copyright © 1988 by the American Geophysical Union.
ISSN
0886-6236
eISSN
1944-9224
D.O.I.
10.1029/GB002i004p00427
Publisher site
See Article on Publisher Site

Abstract

We examine the causes of anoxia in regions such as the Eastern Mediterranean, which have exchange over sills with adjacent basins. Box models show that the concentration of the limiting nutrient is the major determinant of deep oxygen levels. The most effective way of increasing nutrient concentrations to the point where anoxia occurs is to change the flow pattern across the sills ventilating the basins. With a sill exchange pattern such as that in the present Strait of Sicily, it is difficult to obtain anoxia in the Eastern Mediterranean without also driving the Western Mediterranean to low oxygen and high nutrient levels. Episodes of anoxia in the Eastern Mediterranean are associated with a freshening of surface waters. A reversal in flow directions, presumably resulting from the observed freshening, will inevitably lead to anoxia associated with increased sediment burial rates of the limiting nutrient and will leave the Western Mediterranean largely unaffected, in keeping with the observational evidence.

Journal

Global Biogeochemical CyclesWiley

Published: Dec 1, 1988

References

  • Causes of anoxia in the world ocean
    Sarmiento, Sarmiento; Herbert, Herbert; Toggweiler, Toggweiler
  • Benthic isotope evidence for changes of the Mediterranean outflow during the late Quaternary
    Zahn, Zahn; Sarnthein, Sarnthein; Erlenkeuser, Erlenkeuser

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off