Mechanism underlying the effect of long‐term exposure to low dose of pesticides on DNA integrity

Mechanism underlying the effect of long‐term exposure to low dose of pesticides on DNA integrity Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long‐term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long‐term effect of low‐level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON‐1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1‐dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide‐spraying period was independent on PON‐1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1‐dependent DNA repair activity through 8‐oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide‐exposure. A post‐translational regulation of OGG1 by pesticide may be postulated. Taken together, long‐term exposure to low‐levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Toxicology Wiley

Mechanism underlying the effect of long‐term exposure to low dose of pesticides on DNA integrity

Loading next page...
 
/lp/wiley/mechanism-underlying-the-effect-of-long-term-exposure-to-low-dose-of-Ybh6Qe7grU
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1520-4081
eISSN
1522-7278
D.O.I.
10.1002/tox.22534
Publisher site
See Article on Publisher Site

Abstract

Pesticides, including herbicides, insecticides and fungicides, are widely used in intensive agriculture. Recently, the long‐term effects of pesticide exposure were found to be associated with many diseases. In this study, we evaluated the long‐term effect of low‐level exposure to a mixture of pesticides on DNA damage response (DDR) in relation to individual detoxifying variability. A residential population chronically exposed to pesticides was enrolled, biological/environmental pesticide levels; paroxonase 1 (PON‐1) activity and 192 Q/R polymorphism and DDR were evaluated at three different periods of pesticide exposure. OGG1‐dependent DNA repair activity was decreased in relation to pesticide exposure. The increase of DNA lesions and pesticide levels in the intensive pesticide‐spraying period was independent on PON‐1 activity. Next, human bronchial epithelial and neuronal cells were used as a model for in vitro evaluation of the mechanistic effect of pesticides. Pesticides induced mitochondrial dysfunction leading to ROS formation. ROS from mitochondria induced DNA damage, which in turn induced OGG1‐dependent DNA repair activity through 8‐oxoguanine DNA glycosylase 1 (OGG1) expression and activation. Even though OGG1 was overexpressed, an inhibition of its activity, associated with DNA lesion accumulation, was found at prolonged pesticide‐exposure. A post‐translational regulation of OGG1 by pesticide may be postulated. Taken together, long‐term exposure to low‐levels of pesticides affects DDR resulting in accumulation of DNA lesions that eventually may lead to cancer or neurological disorders.

Journal

Environmental ToxicologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial