Mapping uncertainty: sensitivity of wildlife habitat ratings to expert opinion

Mapping uncertainty: sensitivity of wildlife habitat ratings to expert opinion Summary 1 Expert opinion is frequently called upon by natural resource and conservation professionals to aid decision making. Where species are difficult or expensive to monitor, expert knowledge often serves as the foundation for habitat suitability models and resulting maps. Despite the long history and widespread use of expert‐based models, there has been little recognition or assessment of uncertainty in predictions. 2 Across British Columbia, Canada, expert‐based habitat suitability models help guide resource planning and development. We used Monte Carlo simulations to identify the most sensitive parameters in a wildlife habitat ratings model, the precision of ratings for a number of ecosystem units, and variation in the total area of high‐quality habitats due to uncertainty in expert opinion. 3 The greatest uncertainty in habitat ratings resulted from simulations conducted using a uniform distribution and a standard deviation calculated from the range of possible scores for the model attributes. For most ecological units, the mean score, following 1000 simulations, varied considerably from the reported value. When applied across the study area, assumed variation in expert opinion resulted in dramatic decreases in the geographical area of high‐ (−85%) and moderately high‐quality habitats (−68%). The majority of habitat polygons could vary by up to one class (85%) with smaller percentages varying by up to two classes (9%) or retaining their original rank (7%). Our model was based on only four parameters, but no variable consistently accounted for the majority of uncertainty across the study area. 4 Synthesis and applications. We illustrated the power of uncertainty and sensitivity analyses to improve or assess the reliability of predictive species distribution models. Results from our case study suggest that even simple expert‐based predictive models can be sensitive to variation in opinion. The magnitude of uncertainty that is tolerable to decision making, however, will vary depending on the application of the model. When presented as error bounds for individual predictions or maps of uncertainty across landscapes, estimates of uncertainty allow managers and conservation professionals to determine if the model and input data reliably support their particular decision‐making process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Mapping uncertainty: sensitivity of wildlife habitat ratings to expert opinion

Loading next page...
 
/lp/wiley/mapping-uncertainty-sensitivity-of-wildlife-habitat-ratings-to-expert-Ewj9DIxvKz
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
DOI
10.1111/j.0021-8901.2004.00975.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1 Expert opinion is frequently called upon by natural resource and conservation professionals to aid decision making. Where species are difficult or expensive to monitor, expert knowledge often serves as the foundation for habitat suitability models and resulting maps. Despite the long history and widespread use of expert‐based models, there has been little recognition or assessment of uncertainty in predictions. 2 Across British Columbia, Canada, expert‐based habitat suitability models help guide resource planning and development. We used Monte Carlo simulations to identify the most sensitive parameters in a wildlife habitat ratings model, the precision of ratings for a number of ecosystem units, and variation in the total area of high‐quality habitats due to uncertainty in expert opinion. 3 The greatest uncertainty in habitat ratings resulted from simulations conducted using a uniform distribution and a standard deviation calculated from the range of possible scores for the model attributes. For most ecological units, the mean score, following 1000 simulations, varied considerably from the reported value. When applied across the study area, assumed variation in expert opinion resulted in dramatic decreases in the geographical area of high‐ (−85%) and moderately high‐quality habitats (−68%). The majority of habitat polygons could vary by up to one class (85%) with smaller percentages varying by up to two classes (9%) or retaining their original rank (7%). Our model was based on only four parameters, but no variable consistently accounted for the majority of uncertainty across the study area. 4 Synthesis and applications. We illustrated the power of uncertainty and sensitivity analyses to improve or assess the reliability of predictive species distribution models. Results from our case study suggest that even simple expert‐based predictive models can be sensitive to variation in opinion. The magnitude of uncertainty that is tolerable to decision making, however, will vary depending on the application of the model. When presented as error bounds for individual predictions or maps of uncertainty across landscapes, estimates of uncertainty allow managers and conservation professionals to determine if the model and input data reliably support their particular decision‐making process.

Journal

Journal of Applied EcologyWiley

Published: Dec 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off