Magnetically separable g‐C3N4 hybrid nanocomposite: Highly efficient and eco‐friendly recyclable catalyst for one‐pot synthesis of α‐aminonitriles

Magnetically separable g‐C3N4 hybrid nanocomposite: Highly efficient and eco‐friendly... A magnetically separable graphitic carbon nitride nanocomposite (Fe3O4/g‐C3N4) as a catalyst for the three‐component condensation reactions of carbonyl compounds, amines and trimethylsilylcyanide was thoroughly investigated. The reaction of these three components was found to be efficient, economical and green and took place in the presence of a catalytic amount of the magnetically separable catalyst to yield the corresponding α‐aminonitriles in good to excellent yields. The prepared nanocomposite was characterized using scanning electron microscopy and energy‐dispersive X‐ray and Fourier transform infrared spectroscopies. The nanocomposite was also found to be reusable could be recovered easily and reused several times without distinct deterioration in its catalytic activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Magnetically separable g‐C3N4 hybrid nanocomposite: Highly efficient and eco‐friendly recyclable catalyst for one‐pot synthesis of α‐aminonitriles

Loading next page...
 
/lp/wiley/magnetically-separable-g-c3n4-hybrid-nanocomposite-highly-efficient-Zk5WTLaw9W
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4188
Publisher site
See Article on Publisher Site

Abstract

A magnetically separable graphitic carbon nitride nanocomposite (Fe3O4/g‐C3N4) as a catalyst for the three‐component condensation reactions of carbonyl compounds, amines and trimethylsilylcyanide was thoroughly investigated. The reaction of these three components was found to be efficient, economical and green and took place in the presence of a catalytic amount of the magnetically separable catalyst to yield the corresponding α‐aminonitriles in good to excellent yields. The prepared nanocomposite was characterized using scanning electron microscopy and energy‐dispersive X‐ray and Fourier transform infrared spectroscopies. The nanocomposite was also found to be reusable could be recovered easily and reused several times without distinct deterioration in its catalytic activity.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off