Long‐term nitrogen addition causes the evolution of less‐cooperative mutualists

Long‐term nitrogen addition causes the evolution of less‐cooperative mutualists Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long‐term (22 years) N‐addition experiment, we find that elevated N inputs have altered the legume–rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less‐mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N‐fertilized treatments produced 17–30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume–rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less‐cooperative rhizobia may have important environmental consequences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolution Wiley

Long‐term nitrogen addition causes the evolution of less‐cooperative mutualists

Loading next page...
 
/lp/wiley/long-term-nitrogen-addition-causes-the-evolution-of-less-cooperative-jw78M5r50w
Publisher
Wiley
Copyright
Copyright © 2015, Society for the Study of Evolution
ISSN
0014-3820
eISSN
1558-5646
D.O.I.
10.1111/evo.12594
Publisher site
See Article on Publisher Site

Abstract

Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long‐term (22 years) N‐addition experiment, we find that elevated N inputs have altered the legume–rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less‐mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N‐fertilized treatments produced 17–30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume–rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less‐cooperative rhizobia may have important environmental consequences.

Journal

EvolutionWiley

Published: Mar 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off