Long Survival of Retinal Ganglion Cells in the Cat After Selective Crush of the Optic Nerve

Long Survival of Retinal Ganglion Cells in the Cat After Selective Crush of the Optic Nerve In each of four cats gentle pressure was applied to one optic nerve by means of an inflatable cuff in order to disrupt the largest axons (Y fibres) and so produce a conduction block in them. It has previously been shown that this technique, as used by us, causes Wallerian degeneration in the fibres posterior to the site of application of the pressure (the crush site). The optic nerves and retinas in these cats were examined 2–2.8 years later. The optic nerves were prepared for electron microscopy and the retinas were flat‐mounted. Here we report an average 90% loss of large axons (>5 μm diameter) in the nerve posterior to the crush site. However, in the part of the nerve anterior to the crush site there was only a 33% loss and in the retina only a 57.5% reduction in the number of neurons of soma diameter >25 μm (i.e. alpha cells, the cell bodies of the Y neurons). These last two sets of values were significantly different, suggesting that the retinal ganglion cells had shrunk relatively more than the axons. Thus, the crushing technique has effectively axotomized almost all the Y fibres but, in spite of this, about half of the alpha retinal ganglion cells have survived this particular form of axotomy, with their axons intact at least for some distance into the optic nerve. This long survival raises the possibility that these neurons may have regenerated axons which have found targets and thus ensured their survival. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Long Survival of Retinal Ganglion Cells in the Cat After Selective Crush of the Optic Nerve

Loading next page...
 
/lp/wiley/long-survival-of-retinal-ganglion-cells-in-the-cat-after-selective-MvL0KkxFS0
Publisher
Wiley
Copyright
Copyright © 1991 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
DOI
10.1111/j.1460-9568.1991.tb00058.x
Publisher site
See Article on Publisher Site

Abstract

In each of four cats gentle pressure was applied to one optic nerve by means of an inflatable cuff in order to disrupt the largest axons (Y fibres) and so produce a conduction block in them. It has previously been shown that this technique, as used by us, causes Wallerian degeneration in the fibres posterior to the site of application of the pressure (the crush site). The optic nerves and retinas in these cats were examined 2–2.8 years later. The optic nerves were prepared for electron microscopy and the retinas were flat‐mounted. Here we report an average 90% loss of large axons (>5 μm diameter) in the nerve posterior to the crush site. However, in the part of the nerve anterior to the crush site there was only a 33% loss and in the retina only a 57.5% reduction in the number of neurons of soma diameter >25 μm (i.e. alpha cells, the cell bodies of the Y neurons). These last two sets of values were significantly different, suggesting that the retinal ganglion cells had shrunk relatively more than the axons. Thus, the crushing technique has effectively axotomized almost all the Y fibres but, in spite of this, about half of the alpha retinal ganglion cells have survived this particular form of axotomy, with their axons intact at least for some distance into the optic nerve. This long survival raises the possibility that these neurons may have regenerated axons which have found targets and thus ensured their survival.

Journal

European Journal of NeuroscienceWiley

Published: Dec 1, 1991

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off