Long‐lasting pathological consequences of overexpression‐induced α‐synuclein spreading in the rat brain

Long‐lasting pathological consequences of overexpression‐induced α‐synuclein spreading in... Increased expression of α‐synuclein can initiate its long‐distance brain transfer, representing a potential mechanism for pathology spreading in age‐related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression‐induced α‐synuclein transfer were assessed over a 1‐year period after injection of viral vectors carrying human α‐synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long‐lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression‐induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α‐synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression‐induced spreading, even if temporary, causes long‐lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α‐synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aging Cell Wiley

Long‐lasting pathological consequences of overexpression‐induced α‐synuclein spreading in the rat brain

Loading next page...
 
/lp/wiley/long-lasting-pathological-consequences-of-overexpression-induced-2ZmQIqPc5a
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 The Anatomical Society and John Wiley & Sons Ltd.
ISSN
1474-9718
eISSN
1474-9726
D.O.I.
10.1111/acel.12727
Publisher site
See Article on Publisher Site

Abstract

Increased expression of α‐synuclein can initiate its long‐distance brain transfer, representing a potential mechanism for pathology spreading in age‐related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression‐induced α‐synuclein transfer were assessed over a 1‐year period after injection of viral vectors carrying human α‐synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long‐lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression‐induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α‐synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression‐induced spreading, even if temporary, causes long‐lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α‐synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation.

Journal

Aging CellWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial