Local effects induced by dynamic load self‐heating in NiTi wires of shape memory alloys

Local effects induced by dynamic load self‐heating in NiTi wires of shape memory alloys The use of shape memory alloys wires in dampers devices for Civil Engineering applications is well documented in the literature. This paper develops a critical discussion on the wire macroscopic behavior and on the associated temperature effects with emphasis on the wire diameter. Vibration damping requires the absorption of mechanical energy and its conversion to heat via the action of hysteresis cycles. The experimental study is carried out on NiTi wires of different diameters. The flat cycles shown by thin wires (i.e., 0.5 mm of diameter or less) and the nonclassical S‐shaped cycles (e.g., for diameter 2.46 mm) establish clear differences in the response of the samples. For this reason, a supplementary investigation is here reported to show that the flat cycles are coherent with the classical treatment of shape memory alloys as a first‐order phase transition, but the S‐shaped cycles of thick wires can be associated to an anomaly in the heat capacity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural Control and Health Monitoring Wiley

Local effects induced by dynamic load self‐heating in NiTi wires of shape memory alloys

Loading next page...
 
/lp/wiley/local-effects-induced-by-dynamic-load-self-heating-in-niti-wires-of-0V0yYZHUeF
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1545-2255
eISSN
1545-2263
D.O.I.
10.1002/stc.2134
Publisher site
See Article on Publisher Site

Abstract

The use of shape memory alloys wires in dampers devices for Civil Engineering applications is well documented in the literature. This paper develops a critical discussion on the wire macroscopic behavior and on the associated temperature effects with emphasis on the wire diameter. Vibration damping requires the absorption of mechanical energy and its conversion to heat via the action of hysteresis cycles. The experimental study is carried out on NiTi wires of different diameters. The flat cycles shown by thin wires (i.e., 0.5 mm of diameter or less) and the nonclassical S‐shaped cycles (e.g., for diameter 2.46 mm) establish clear differences in the response of the samples. For this reason, a supplementary investigation is here reported to show that the flat cycles are coherent with the classical treatment of shape memory alloys as a first‐order phase transition, but the S‐shaped cycles of thick wires can be associated to an anomaly in the heat capacity.

Journal

Structural Control and Health MonitoringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off