Lithosphere folding: Primary response to compression? (from central Asia to Paris basin)

Lithosphere folding: Primary response to compression? (from central Asia to Paris basin) We examine the role of lithosphere folding in the large‐scale evolution of the continental lithosphere. Analysis of the record of recent vertical motions and the geometry of basin deflection for a number of sites in Europe and worldwide suggests that lithospheric folding is a primary response of the lithosphere to recently induced compressional stress fields. Despite the widespread opinion, folding can persist during long periods of time independently of the presence of many inhomogeneities such as crustal faults and inherited weakness zones. The characteristic wavelengths of folding are determined by the presence of young lithosphere in large parts of Europe and central Asia and by the geometries of the sediment bodies acting as a load on the lithosphere in basins. The proximity of these sites to the areas of active tectonic compression suggests that the technically induced horizontal stresses are responsible for the large‐scale warping of the lithosphere. Wavelengths and persistence of folding are controlled by many factors such as rheology, faulting, time after the end of the major tectonic compression, nonlinear effects, and initial geometry of the folded area. In particular, the persistence of periodical undulations in central Australia (700 Myr since onset of folding) or in the Paris basin (60 Myr) long after the end of the initial intensive tectonic compression requires a very strong rheology compatible with the effective elastic thickness values of about 100 km in the first case and 50–60 km in the second case. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tectonics Wiley

Lithosphere folding: Primary response to compression? (from central Asia to Paris basin)

Tectonics, Volume 18 (6) – Dec 1, 1999

Loading next page...
 
/lp/wiley/lithosphere-folding-primary-response-to-compression-from-central-asia-eDbFMlTs0x
Publisher
Wiley
Copyright
Copyright © 1999 by the American Geophysical Union.
ISSN
0278-7407
eISSN
1944-9194
DOI
10.1029/1999TC900040
Publisher site
See Article on Publisher Site

Abstract

We examine the role of lithosphere folding in the large‐scale evolution of the continental lithosphere. Analysis of the record of recent vertical motions and the geometry of basin deflection for a number of sites in Europe and worldwide suggests that lithospheric folding is a primary response of the lithosphere to recently induced compressional stress fields. Despite the widespread opinion, folding can persist during long periods of time independently of the presence of many inhomogeneities such as crustal faults and inherited weakness zones. The characteristic wavelengths of folding are determined by the presence of young lithosphere in large parts of Europe and central Asia and by the geometries of the sediment bodies acting as a load on the lithosphere in basins. The proximity of these sites to the areas of active tectonic compression suggests that the technically induced horizontal stresses are responsible for the large‐scale warping of the lithosphere. Wavelengths and persistence of folding are controlled by many factors such as rheology, faulting, time after the end of the major tectonic compression, nonlinear effects, and initial geometry of the folded area. In particular, the persistence of periodical undulations in central Australia (700 Myr since onset of folding) or in the Paris basin (60 Myr) long after the end of the initial intensive tectonic compression requires a very strong rheology compatible with the effective elastic thickness values of about 100 km in the first case and 50–60 km in the second case.

Journal

TectonicsWiley

Published: Dec 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off